BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36343004)

  • 1. Brain-Controlled 2D Navigation Robot Based on a Spatial Gradient Controller and Predictive Environmental Coordinator.
    Zhang D; Liu S; Zhang J; Li G; Suo D; Liu T; Luo J; Ming Z; Wu J; Yan T
    IEEE J Biomed Health Inform; 2022 Dec; 26(12):6138-6149. PubMed ID: 36343004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian Shared Control Approach for Wheelchair Robot With Brain Machine Interface.
    Deng X; Yu ZL; Lin C; Gu Z; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):328-338. PubMed ID: 31825869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A brain-actuated robotic arm system using non-invasive hybrid brain-computer interface and shared control strategy.
    Cao L; Li G; Xu Y; Zhang H; Shu X; Zhang D
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33862607
    [No Abstract]   [Full Text] [Related]  

  • 4. EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface.
    Shao L; Zhang L; Belkacem AN; Zhang Y; Chen X; Li J; Liu H
    J Healthc Eng; 2020; 2020():6968713. PubMed ID: 32399166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An EEG-based brain-computer interface for real-time multi-task robotic control.
    An Y; Wong JKW; Ling SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-class self-paced BCI to control a robot in four directions.
    Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual and Actual Humanoid Robot Control with Four-Class Motor-Imagery-Based Optical Brain-Computer Interface.
    Batula AM; Kim YE; Ayaz H
    Biomed Res Int; 2017; 2017():1463512. PubMed ID: 28804712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI.
    Andersson P; Pluim JP; Viergever MA; Ramsey NF
    Brain Topogr; 2013 Jan; 26(1):177-85. PubMed ID: 22965825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel system of SSVEP-based human-robot coordination.
    Han X; Lin K; Gao S; Gao X
    J Neural Eng; 2019 Feb; 16(1):016006. PubMed ID: 30221626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-vision fused brain machine interface based on dynamic augmented reality visual stimulation.
    Zhang D; Liu S; Wang K; Zhang J; Chen D; Zhang Y; Nie L; Yang J; Shinntarou F; Wu J; Yan T
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34607320
    [No Abstract]   [Full Text] [Related]  

  • 16. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Force Feedback Device in a Hybrid Brain-Computer Interface Based on SSVEP, EOG and Eye Tracking for Sorting Items.
    Kubacki A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.
    Ron-Angevin R; Velasco-Álvarez F; Fernández-Rodríguez Á; Díaz-Estrella A; Blanca-Mena MJ; Vizcaíno-Martín FJ
    J Neuroeng Rehabil; 2017 May; 14(1):49. PubMed ID: 28558741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A low-cost EEG system-based hybrid brain-computer interface for humanoid robot navigation and recognition.
    Choi B; Jo S
    PLoS One; 2013; 8(9):e74583. PubMed ID: 24023953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.