These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36343004)

  • 21. A BCI using VEP for continuous control of a mobile robot.
    Kapeller C; Hintermuller C; Abu-Alqumsan M; Pruckl R; Peer A; Guger C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5254-7. PubMed ID: 24110921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Soft brain-machine interfaces for assistive robotics: A novel control approach.
    Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm.
    Chen X; Zhao B; Wang Y; Gao X
    J Neural Eng; 2019 Apr; 16(2):026012. PubMed ID: 30523962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An SSVEP based BCI to control a humanoid robot by using portable EEG device.
    Güneysu A; Akin HL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6905-8. PubMed ID: 24111332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlling an avatar by thought using real-time fMRI.
    Cohen O; Koppel M; Malach R; Friedman D
    J Neural Eng; 2014 Jun; 11(3):035006. PubMed ID: 24834973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials.
    Kim KT; Suk HI; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):654-665. PubMed ID: 27514060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial-temporal aspects of continuous EEG-based neurorobotic control.
    Suma D; Meng J; Edelman BJ; He B
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33049729
    [No Abstract]   [Full Text] [Related]  

  • 30. A flexible analytic wavelet transform based approach for motor-imagery tasks classification in BCI applications.
    Chaudhary S; Taran S; Bajaj V; Siuly S
    Comput Methods Programs Biomed; 2020 Apr; 187():105325. PubMed ID: 31964514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Driving a Semiautonomous Mobile Robotic Car Controlled by an SSVEP-Based BCI.
    Stawicki P; Gembler F; Volosyak I
    Comput Intell Neurosci; 2016; 2016():4909685. PubMed ID: 27528864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom.
    Li J; Ji H; Cao L; Zang D; Gu R; Xia B; Wu Q
    Int J Neural Syst; 2014 Jun; 24(4):1450014. PubMed ID: 24694169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four-Way Classification of EEG Responses To Virtual Robot Navigation.
    Wirth C; Toth J; Arvaneh M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3050-3053. PubMed ID: 33018648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Common spatial pattern and wavelet decomposition for motor imagery EEG- fTCD brain-computer interface.
    Khalaf A; Sejdic E; Akcakaya M
    J Neurosci Methods; 2019 May; 320():98-106. PubMed ID: 30946880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.
    Tidoni E; Gergondet P; Fusco G; Kheddar A; Aglioti SM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):772-781. PubMed ID: 28113631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An autonomous hybrid brain-computer interface system combined with eye-tracking in virtual environment.
    Tan Y; Lin Y; Zang B; Gao X; Yong Y; Yang J; Li S
    J Neurosci Methods; 2022 Feb; 368():109442. PubMed ID: 34915046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.
    Cavrini F; Bianchi L; Quitadamo LR; Saggio G
    Comput Intell Neurosci; 2016; 2016():9845980. PubMed ID: 26819595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain-Computer Interface-Based Humanoid Control: A Review.
    Chamola V; Vineet A; Nayyar A; Hossain E
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32605077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.