These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36343009)

  • 1. Human Perception of Wrist Flexion and Extension Torque During Upper and Lower Extremity Movement.
    Welker CG; Collins SH; Okamura AM
    IEEE Trans Haptics; 2022; 15(4):741-752. PubMed ID: 36343009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke.
    Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N
    J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Teleoperation of an Ankle-Foot Prosthesis With a Wrist Exoskeleton.
    Welker CG; Chiu VL; Voloshina AS; Collins SH; Okamura AM
    IEEE Trans Biomed Eng; 2021 May; 68(5):1714-1725. PubMed ID: 33347402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Wrist Interface Based on Fully Actuated Coaxial Spherical Parallel Mechanism for Force Interaction.
    Lee J; Kim H; Yang W
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Soft Robotic Wearable Wrist Device for Kinesthetic Haptic Feedback.
    Skorina EH; Luo M; Onal CD
    Front Robot AI; 2018; 5():83. PubMed ID: 33500962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Associations between isometric quadriceps strength characteristics, knee flexion angles, and knee extension moments during single leg step down and landing tasks after anterior cruciate ligament reconstruction.
    Lisee C; Birchmeier T; Yan A; Kuenze C
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():231-236. PubMed ID: 31669921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of an underactuated arm exoskeleton on wrist and elbow kinematics during Prioritized Activities of daily living.
    Casanova-Batlle E; de Zee M; Thøgersen M; Tillier Y; Andreasen Struijk LNS
    J Biomech; 2022 Jun; 139():111137. PubMed ID: 35594818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.
    Mooney LM; Herr HM
    J Neuroeng Rehabil; 2016 Jan; 13():4. PubMed ID: 26817449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot testing of the spring operated wearable enhancer for arm rehabilitation (SpringWear).
    Chen J; Lum PS
    J Neuroeng Rehabil; 2018 Mar; 15(1):13. PubMed ID: 29499712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multibody Analysis and Control of a Full-Wrist Exoskeleton for Tremor Alleviation.
    Wang J; Barry OR
    J Biomech Eng; 2020 Dec; 142(12):. PubMed ID: 32494816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. User surveys support designing a prosthetic wrist that incorporates the Dart Thrower's Motion.
    Davidson M; Bodine C; Weir RFF
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):312-315. PubMed ID: 29514521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A biomechanical study on effect of deep radioulnar ligaments on the distal radioulnar joint rotatory stability repaired by bone suture anchors].
    Yi M; Zhang D; Huang F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 May; 31(5):570-573. PubMed ID: 29798547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads.
    Bryan GM; Franks PW; Song S; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    J Neuroeng Rehabil; 2021 Nov; 18(1):161. PubMed ID: 34743714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-Human Hand Interactions Aid Balance During Walking by Haptic Communication.
    Wu M; Drnach L; Bong SM; Song YS; Ting LH
    Front Robot AI; 2021; 8():735575. PubMed ID: 34805289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human force discrimination during active arm motion for force feedback design.
    Feyzabadi S; Straube S; Folgheraiter M; Kirchner EA; Kim SK; Albiez JC
    IEEE Trans Haptics; 2013; 6(3):309-19. PubMed ID: 24808327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.