BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 36343061)

  • 1. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation.
    Tran A; Lassalle L; Zille P; Guillin R; Pluot E; Adam C; Charachon M; Brat H; Wallaert M; d'Assignies G; Rizk B
    Eur Radiol; 2022 Dec; 32(12):8394-8403. PubMed ID: 35726103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence-Assisted Diagnosis of Anterior Cruciate Ligament Tears From Magnetic Resonance Images: Algorithm Development and Validation Study.
    Chen KH; Yang CY; Wang HY; Ma HL; Lee OK
    JMIR AI; 2022 Jul; 1(1):e37508. PubMed ID: 38875555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving inceptionV4 model based on fractional-order snow leopard optimization algorithm for diagnosing of ACL tears.
    Wang D; Yan Y
    Sci Rep; 2024 Apr; 14(1):9843. PubMed ID: 38684782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valid and reliable diagnostic performance of dual-energy CT in anterior cruciate ligament rupture.
    Liu D; Hu P; Cai ZJ; Lu WH; Pan LY; Liu X; Peng XJ; Li YS; Xiao WF
    Eur Radiol; 2023 Nov; 33(11):7769-7778. PubMed ID: 37171489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning-Based Performance Comparison to Diagnose Anterior Cruciate Ligament Tears.
    Awan MJ; Mohd Rahim MS; Salim N; Rehman A; Nobanee H
    J Healthc Eng; 2022; 2022():2550120. PubMed ID: 35444781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Model Enhances Clinicians' Diagnostic Accuracy to More Than 96% for Anterior Cruciate Ligament Ruptures on Magnetic Resonance Imaging.
    Wang DY; Liu SG; Ding J; Sun AL; Jiang D; Jiang J; Zhao JZ; Chen DS; Ji G; Li N; Yuan HS; Yu JK
    Arthroscopy; 2024 Apr; 40(4):1197-1205. PubMed ID: 37597705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective automatic detection of anterior cruciate ligament injury using convolutional neural network with two attention mechanism modules.
    Liang C; Li X; Qin Y; Li M; Ma Y; Wang R; Xu X; Yu J; Lv S; Luo H
    BMC Med Imaging; 2023 Sep; 23(1):120. PubMed ID: 37697236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Detection of Knee Anterior Cruciate Ligament from Magnetic Resonance Imaging Using Deep Learning Approach.
    Awan MJ; Rahim MSM; Salim N; Mohammed MA; Garcia-Zapirain B; Abdulkareem KH
    Diagnostics (Basel); 2021 Jan; 11(1):. PubMed ID: 33440798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-stop detection of anterior cruciate ligament injuries on magnetic resonance imaging using deep learning with multicenter validation.
    Wang M; Yu C; Li M; Zhang X; Jiang K; Zhang Z; Zhang X
    Quant Imaging Med Surg; 2024 May; 14(5):3405-3416. PubMed ID: 38720839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Systematic Review on Deep Learning Model in Computer-aided Diagnosis for Anterior Cruciate Ligament Injury.
    Herman ; Kumar YJ; Wee SY; Perhakaran VK
    Curr Med Imaging; 2024 May; ():. PubMed ID: 38721794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refined Detection and Classification of Knee Ligament Injury Based on ResNet Convolutional Neural Networks.
    Voinea ȘV; Gheonea IA; Teică RV; Florescu LM; Roman M; Selișteanu D
    Life (Basel); 2024 Apr; 14(4):. PubMed ID: 38672749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lightweight Attentive Graph Neural Network with Conditional Random Field for Diagnosis of Anterior Cruciate Ligament Tear.
    Wang J; Luo J; Liang J; Cao Y; Feng J; Tan L; Wang Z; Li J; Hounye AH; Hou M; He J
    J Imaging Inform Med; 2024 Apr; 37(2):688-705. PubMed ID: 38343260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retracted: Machine Learning-Based Performance Comparison to Diagnose Anterior Cruciate Ligament Tears.
    Healthcare Engineering JO
    J Healthc Eng; 2023; 2023():9854282. PubMed ID: 37829428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of the fat-suppression image-subtraction method using deep learning for abnormality detection on knee MRI.
    Kasuya S; Inaoka T; Wada A; Nakatsuka T; Nakagawa K; Terada H
    Pol J Radiol; 2023; 88():e562-e573. PubMed ID: 38362017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of convolutional neural network model for diagnosing tear of anterior cruciate ligament using only one knee magnetic resonance image.
    Shin H; Choi GS; Chang MC
    Medicine (Baltimore); 2022 Nov; 101(44):e31510. PubMed ID: 36343061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated detection of anterior cruciate ligament tears using a deep convolutional neural network.
    Minamoto Y; Akagi R; Maki S; Shiko Y; Tozawa R; Kimura S; Yamaguchi S; Kawasaki Y; Ohtori S; Sasho T
    BMC Musculoskelet Disord; 2022 Jun; 23(1):577. PubMed ID: 35705930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear.
    Chang PD; Wong TT; Rasiej MJ
    J Digit Imaging; 2019 Dec; 32(6):980-986. PubMed ID: 30859341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of convolutional neural network model for diagnosing meniscus tear using magnetic resonance image.
    Shin H; Choi GS; Shon OJ; Kim GB; Chang MC
    BMC Musculoskelet Disord; 2022 May; 23(1):510. PubMed ID: 35637451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knee Ligament Sprains: Diagnosing Anterior Cruciate Ligament Injuries by Patient Interview. Development and Evaluation of the Anterior Cruciate Ligament Injury Score (ACLIS).
    Lukas S; Putman S; Delay C; Blairon A; Chazard E; Letartre R
    Orthop Traumatol Surg Res; 2022 May; 108(3):103257. PubMed ID: 35219887
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.