BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36343261)

  • 1. CRISPR-based engineering of phages for in situ bacterial base editing.
    Nethery MA; Hidalgo-Cantabrana C; Roberts A; Barrangou R
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2206744119. PubMed ID: 36343261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 3. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system.
    Qin L; Li J; Wang Q; Xu Z; Sun L; Alariqi M; Manghwar H; Wang G; Li B; Ding X; Rui H; Huang H; Lu T; Lindsey K; Daniell H; Zhang X; Jin S
    Plant Biotechnol J; 2020 Jan; 18(1):45-56. PubMed ID: 31116473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3.
    Schroven K; Voet M; Lavigne R; Hendrix H
    Methods Mol Biol; 2024; 2793():113-128. PubMed ID: 38526727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
    Lemay ML; Tremblay DM; Moineau S
    ACS Synth Biol; 2017 Jul; 6(7):1351-1358. PubMed ID: 28324650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of T4 phage engineering via CRISPR/Cas9.
    Duong MM; Carmody CM; Ma Q; Peters JE; Nugen SR
    Sci Rep; 2020 Oct; 10(1):18229. PubMed ID: 33106580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 10. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene editing and scalable functional genomic screening in
    Engstler M; Beneke T
    Elife; 2023 May; 12():. PubMed ID: 37222701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome.
    Nath A; Bhattacharjee R; Nandi A; Sinha A; Kar S; Manoharan N; Mitra S; Mojumdar A; Panda PK; Patro S; Dutt A; Ahuja R; Verma SK; Suar M
    Biomed Pharmacother; 2022 Jul; 151():113122. PubMed ID: 35594718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 14. Development of a RecE/T-Assisted CRISPR-Cas9 Toolbox for Lactobacillus.
    Huang H; Song X; Yang S
    Biotechnol J; 2019 Jul; 14(7):e1800690. PubMed ID: 30927506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Intein-Mediated Split-nCas9 System for Base Editing in Plants.
    Yuan G; Lu H; De K; Hassan MM; Liu Y; Li Y; Muchero W; Abraham PE; Tuskan GA; Yang X
    ACS Synth Biol; 2022 Jul; 11(7):2513-2517. PubMed ID: 35767601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for Bacteriophage T5 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering.
    Ramirez-Chamorro L; Boulanger P; Rossier O
    Front Microbiol; 2021; 12():667332. PubMed ID: 33981295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the modified cytosine base-editing in the cultured cells of bama minipig.
    Pan JS; Lin ZS; Wen JC; Guo JF; Wu XH; Liu YY; Lai WJ; Liang QY; Xie YS; Chen YR; Chen YH; Yan AF; Feng J; Liu L; Gong DY; Zhu XX; Lu JH; Tang DS
    Biotechnol Lett; 2021 Sep; 43(9):1699-1714. PubMed ID: 34189671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phage Engineering for Targeted Multidrug-Resistant
    Song J; Liu Z; Zhang Q; Liu Y; Chen Y
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Cas9 Targeting and Red Recombination for Designer Phage Engineering.
    Choi SY; Romero-Calle DX; Cho HG; Bae HW; Cho YH
    J Microbiol; 2024 Jan; 62(1):1-10. PubMed ID: 38300409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.