These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273 [TBL] [Abstract][Full Text] [Related]
8. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Lin YH; Forman-Kay JD; Chan HS Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422 [TBL] [Abstract][Full Text] [Related]
9. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates. Wessén J; Pal T; Das S; Lin YH; Chan HS J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467 [TBL] [Abstract][Full Text] [Related]
10. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation. Das S; Eisen A; Lin YH; Chan HS J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728 [TBL] [Abstract][Full Text] [Related]
11. Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins. Maity H; Baidya L; Reddy G J Phys Chem B; 2022 Aug; 126(32):5959-5971. PubMed ID: 35944496 [TBL] [Abstract][Full Text] [Related]
12. Biophysics of Phase Separation of Disordered Proteins Is Governed by Balance between Short- And Long-Range Interactions. Hazra MK; Levy Y J Phys Chem B; 2021 Mar; 125(9):2202-2211. PubMed ID: 33629837 [TBL] [Abstract][Full Text] [Related]
13. Sequence determinants of protein phase behavior from a coarse-grained model. Dignon GL; Zheng W; Kim YC; Best RB; Mittal J PLoS Comput Biol; 2018 Jan; 14(1):e1005941. PubMed ID: 29364893 [TBL] [Abstract][Full Text] [Related]
14. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation. Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213 [TBL] [Abstract][Full Text] [Related]
15. Multiscale Computational Framework for the Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins. Fernando KS; Jahanmir G; Unarta IC; Chau Y Langmuir; 2024 Apr; 40(14):7607-7619. PubMed ID: 38546977 [TBL] [Abstract][Full Text] [Related]
16. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions. Kang WB; Bao L; Zhang K; Guo J; Zhu BC; Tang QY; Ren WT; Zhu G Soft Matter; 2023 Oct; 19(41):7944-7954. PubMed ID: 37815389 [TBL] [Abstract][Full Text] [Related]
17. Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation. Mammen Regy R; Zheng W; Mittal J Methods Enzymol; 2021; 646():1-17. PubMed ID: 33453922 [TBL] [Abstract][Full Text] [Related]
18. An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins. Huihui J; Ghosh K J Chem Phys; 2020 Apr; 152(16):161102. PubMed ID: 32357776 [TBL] [Abstract][Full Text] [Related]
19. Sequence Sensitivity in Membrane Remodeling by Polyampholyte Condensates. Mondal S; Cui Q J Phys Chem B; 2024 Mar; 128(9):2087-2099. PubMed ID: 38407041 [TBL] [Abstract][Full Text] [Related]
20. Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins. Wohl S; Jakubowski M; Zheng W J Phys Chem Lett; 2021 Jul; 12(28):6684-6691. PubMed ID: 34259536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]