These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36343363)

  • 1. Analytical Formulation and Field-Theoretic Simulation of Sequence-Specific Phase Separation of Protein-Like Heteropolymers with Short- and Long-Spatial-Range Interactions.
    Wessén J; Das S; Pal T; Chan HS
    J Phys Chem B; 2022 Nov; 126(45):9222-9245. PubMed ID: 36343363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters.
    Das S; Amin AN; Lin YH; Chan HS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28558-28574. PubMed ID: 30397688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembling Polypeptides in Complex Coacervation.
    Sathyavageeswaran A; Bonesso Sabadini J; Perry SL
    Acc Chem Res; 2024 Feb; 57(3):386-398. PubMed ID: 38252962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple Explicit-Solvent Model of Polyampholyte Phase Behaviors and Its Ramifications for Dielectric Effects in Biomolecular Condensates.
    Wessén J; Pal T; Das S; Lin YH; Chan HS
    J Phys Chem B; 2021 May; 125(17):4337-4358. PubMed ID: 33890467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation.
    Das S; Eisen A; Lin YH; Chan HS
    J Phys Chem B; 2018 May; 122(21):5418-5431. PubMed ID: 29397728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-Induced Transitions in the Conformational Ensembles of Intrinsically Disordered Proteins.
    Maity H; Baidya L; Reddy G
    J Phys Chem B; 2022 Aug; 126(32):5959-5971. PubMed ID: 35944496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysics of Phase Separation of Disordered Proteins Is Governed by Balance between Short- And Long-Range Interactions.
    Hazra MK; Levy Y
    J Phys Chem B; 2021 Mar; 125(9):2202-2211. PubMed ID: 33629837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence determinants of protein phase behavior from a coarse-grained model.
    Dignon GL; Zheng W; Kim YC; Best RB; Mittal J
    PLoS Comput Biol; 2018 Jan; 14(1):e1005941. PubMed ID: 29364893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Computational Framework for the Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    Fernando KS; Jahanmir G; Unarta IC; Chau Y
    Langmuir; 2024 Apr; 40(14):7607-7619. PubMed ID: 38546977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions.
    Kang WB; Bao L; Zhang K; Guo J; Zhu BC; Tang QY; Ren WT; Zhu G
    Soft Matter; 2023 Oct; 19(41):7944-7954. PubMed ID: 37815389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation.
    Mammen Regy R; Zheng W; Mittal J
    Methods Enzymol; 2021; 646():1-17. PubMed ID: 33453922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytical theory to describe sequence-specific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins.
    Huihui J; Ghosh K
    J Chem Phys; 2020 Apr; 152(16):161102. PubMed ID: 32357776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence Sensitivity in Membrane Remodeling by Polyampholyte Condensates.
    Mondal S; Cui Q
    J Phys Chem B; 2024 Mar; 128(9):2087-2099. PubMed ID: 38407041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins.
    Wohl S; Jakubowski M; Zheng W
    J Phys Chem Lett; 2021 Jul; 12(28):6684-6691. PubMed ID: 34259536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.