These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36343760)

  • 1. A simple model of the electrosensory electromotor loop in Gymnotus omarorum.
    Caputi AA; Waddell JC; Aguilera PA
    Biosystems; 2023 Jan; 223():104800. PubMed ID: 36343760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Getting the news in milliseconds: The role of early novelty detection in active electrosensory exploration.
    Caputi AA; Rodríguez-Cattáneo A; Waddell JC; Pereira AC; Aguilera PA
    Biosystems; 2023 Jan; 223():104803. PubMed ID: 36371021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity.
    Pereira AC; Rodríguez-Cattáneo A; Caputi AA
    J Physiol Paris; 2014; 108(2-3):71-83. PubMed ID: 25088503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal brain development of the pulse type, weakly electric gymnotid fish Gymnotus omarorum.
    Iribarne L; Castelló ME
    J Physiol Paris; 2014; 108(2-3):47-60. PubMed ID: 24844821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish
    Rodríguez-Cattaneo A; Aguilera PA; Caputi AA
    J Exp Biol; 2017 May; 220(Pt 9):1663-1673. PubMed ID: 28202586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probability and amplitude of novelty responses as a function of the change in contrast of the reafferent image in G carapo.
    Caputi AA; Aguilera PA; Castelló ME
    J Exp Biol; 2003 Mar; 206(Pt 6):999-1010. PubMed ID: 12582142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hormone-mediated modulation of the electromotor CPG in pulse-type weakly electric fish. Commonalities and differences across species.
    Borde M; Quintana L; Comas V; Silva A
    Dev Neurobiol; 2020 Jan; 80(1-2):70-80. PubMed ID: 31955508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The midbrain precommand nucleus of the mormyrid electromotor network.
    von der Emde G; Sena LG; Niso R; Grant K
    J Neurosci; 2000 Jul; 20(14):5483-95. PubMed ID: 10884332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-citrulline immunoreactivity reveals nitric oxide production in the electromotor and electrosensory systems of the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT; Allen AR; Oestreich J; Gammie SC
    Brain Behav Evol; 2005; 65(1):1-13. PubMed ID: 15489561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocommunication in pulse Gymnotiformes: the role of electric organ discharge (EOD) time course in species identification.
    Waddell JC; Caputi AA
    J Exp Biol; 2020 Aug; 223(Pt 16):. PubMed ID: 32748795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct neuron phenotypes may serve object feature sensing in the electrosensory lobe of Gymnotus omarorum.
    Nogueira J; Castelló ME; Lescano C; Caputi ÁA
    J Exp Biol; 2021 May; 224(9):. PubMed ID: 33707195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish.
    Pereira AC; Centurión V; Caputi AA
    J Exp Biol; 2005 Mar; 208(Pt 5):961-72. PubMed ID: 15755894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off.
    Nogueira J; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2380-92. PubMed ID: 23761463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive and active electroreception during agonistic encounters in the weakly electric fish Gymnotus omarorum.
    Pedraja F; Perrone R; Silva A; Budelli R
    Bioinspir Biomim; 2016 Oct; 11(6):065002. PubMed ID: 27767014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active electrosensory range of Gymnotus omarorum.
    Pereira AC; Aguilera P; Caputi AA
    J Exp Biol; 2012 Sep; 215(Pt 18):3266-80. PubMed ID: 22915713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish.
    Comas V; Borde M
    J Neurophysiol; 2010 Oct; 104(4):2147-57. PubMed ID: 20719924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of feedback inputs in the apteronotid electrosensory system.
    Bastian J
    J Exp Biol; 1999 May; 202(Pt 10):1327-37. PubMed ID: 10210673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.