These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36343760)

  • 21. The sensory effects of light on the electric organ discharge rate of Gymnotus omarorum.
    Camargo AS; Caputi AA; Aguilera PA
    J Exp Biol; 2023 Sep; 226(17):. PubMed ID: 37408509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strategies of object polarization and their role in electrosensory information gathering.
    Caputi AA; Aguilera PA
    Bioinspir Biomim; 2020 Apr; 15(3):035008. PubMed ID: 31899911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Convergent mosaic brain evolution is associated with the evolution of novel electrosensory systems in teleost fishes.
    Schumacher EL; Carlson BA
    Elife; 2022 Jun; 11():. PubMed ID: 35713403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures.
    Bell CC; Grant K; Serrier J
    J Neurophysiol; 1992 Sep; 68(3):843-58. PubMed ID: 1432052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli.
    Goenechea L; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):907-22. PubMed ID: 15349745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electroreception in G carapo: detection of changes in waveform of the electrosensory signals.
    Aguilera PA; Caputi AA
    J Exp Biol; 2003 Mar; 206(Pt 6):989-98. PubMed ID: 12582141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrosensory and metabolic responses of weakly electric fish to changing water conductivity.
    Wiser SD; Markham MR
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38712896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity.
    Bell CC; Grant K
    J Neurophysiol; 1992 Sep; 68(3):859-75. PubMed ID: 1432053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of novelty detection in pulse-type weakly electric fish.
    Grau HJ; Bastian J
    J Comp Physiol A; 1986 Aug; 159(2):191-200. PubMed ID: 3761224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs.
    Cilleruelo ER; Caputi AA
    Brain Res; 2012 Jan; 1434():102-14. PubMed ID: 21835395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamatergic control of a pattern-generating central nucleus in a gymnotiform fish.
    Comas V; Borde M
    J Neurophysiol; 2021 Jun; 125(6):2339-2355. PubMed ID: 33978492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fish geometry and electric organ discharge determine functional organization of the electrosensory epithelium.
    Sanguinetti-Scheck JI; Pedraja EF; Cilleruelo E; Migliaro A; Aguilera P; Caputi AA; Budelli R
    PLoS One; 2011; 6(11):e27470. PubMed ID: 22096578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.
    Curti S; Falconi A; Morales FR; Borde M
    J Neurosci; 1999 Oct; 19(20):9133-40. PubMed ID: 10516331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hormonal coordination of motor output and internal prediction of sensory consequences in an electric fish.
    Fukutomi M; Carlson BA
    Curr Biol; 2023 Aug; 33(16):3350-3359.e4. PubMed ID: 37490922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multisensory enhancement of electromotor responses to a single moving object.
    Pluta SR; Kawasaki M
    J Exp Biol; 2008 Sep; 211(Pt 18):2919-30. PubMed ID: 18775929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Encoding phase spectrum for evaluating 'electric qualia'.
    Caputi AA; Aguilera PA
    J Exp Biol; 2019 Mar; 222(Pt 5):. PubMed ID: 30659081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calretinin-like immunoreactivity in mormyrid and gymnarchid electrosensory and electromotor systems.
    Friedman MA; Kawasaki M
    J Comp Neurol; 1997 Oct; 387(3):341-57. PubMed ID: 9335419
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.