These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36343823)

  • 1. Silver nanoparticle toxicity to the larvae of oyster Crassostrea angulata: Contribution of in vivo dissolution.
    Zhang L; Wang WX
    Sci Total Environ; 2023 Feb; 858(Pt 2):159965. PubMed ID: 36343823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae.
    Zhang L; Jiang H; Wang WX
    Environ Sci Technol; 2020 Sep; 54(18):11434-11442. PubMed ID: 32786557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dominant Role of Silver Ions in Silver Nanoparticle Toxicity to a Unicellular Alga: Evidence from Luminogen Imaging.
    Zhang L; Wang WX
    Environ Sci Technol; 2019 Jan; 53(1):494-502. PubMed ID: 30525502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes.
    Gao Y; Wu W; Qiao K; Feng J; Zhu L; Zhu X
    Water Res; 2021 Oct; 204():117603. PubMed ID: 34536684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic Effects of Coated Silver Nanoparticles on Marine Invertebrate Larvae: A Proof of Concept Study.
    Chan CY; Chiu JM
    PLoS One; 2015; 10(7):e0132457. PubMed ID: 26171857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of hemocyte subpopulations in silver nanoparticle transformation and toxicity in the oysters Crassostrea hongkongensis.
    Luo Y; Wang WX
    Environ Pollut; 2022 Jul; 305():119281. PubMed ID: 35413408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster).
    Carrazco-Quevedo A; Römer I; Salamanca MJ; Poynter A; Lynch I; Valsami-Jones E
    Ecotoxicol Environ Saf; 2019 Sep; 179():127-134. PubMed ID: 31030055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct toxicity of silver nanoparticles and silver nitrate to Daphnia magna in M4 medium and surface water.
    Hu Y; Chen X; Yang K; Lin D
    Sci Total Environ; 2018 Mar; 618():838-846. PubMed ID: 29054648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver.
    Magesky A; Ribeiro CA; Pelletier É
    Aquat Toxicol; 2016 May; 174():208-27. PubMed ID: 26966875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of exposure to engineered silver nanoparticles and the water-soluble fraction of crude oil in the marine copepod Calanus finmarchicus.
    Farkas J; Cappadona V; Olsen AJ; Hansen BH; Posch W; Ciesielski TM; Goodhead R; Wilflingseder D; Blatzer M; Altin D; Moger J; Booth AM; Jenssen BM
    Aquat Toxicol; 2020 Oct; 227():105582. PubMed ID: 32823071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida.
    Li L; Wu H; Peijnenburg WJ; van Gestel CA
    Nanotoxicology; 2015; 9(6):792-801. PubMed ID: 25387252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data.
    Jemec A; Kahru A; Potthoff A; Drobne D; Heinlaan M; Böhme S; Geppert M; Novak S; Schirmer K; Rekulapally R; Singh S; Aruoja V; Sihtmäe M; Juganson K; Käkinen A; Kühnel D
    Environ Int; 2016 Feb; 87():20-32. PubMed ID: 26638016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating Silver Nanoparticles and Ions in Medaka Larvae by Coupling Two Aggregation-Induced Emission Fluorophores.
    Yan N; He X; Tang BZ; Wang WX
    Environ Sci Technol; 2019 May; 53(10):5895-5905. PubMed ID: 31032615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Bioimaging of Silver Nanoparticle Dissolution in the Gut Environment of Zooplankton.
    Yan N; Tang BZ; Wang WX
    ACS Nano; 2018 Dec; 12(12):12212-12223. PubMed ID: 30457838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-release kinetics and ecotoxicity effects of silver nanoparticles.
    Lee YJ; Kim J; Oh J; Bae S; Lee S; Hong IS; Kim SH
    Environ Toxicol Chem; 2012 Jan; 31(1):155-9. PubMed ID: 22012883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae.
    Gao Y; Yang P; Zhu J
    Ecotoxicol Environ Saf; 2023 Jan; 249():114363. PubMed ID: 36508826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation-dissolution reactions partially explain adverse effects of metallic silver nanoparticles to soil nitrification in different soils.
    Bollyn J; Willaert B; Kerré B; Moens C; Arijs K; Mertens J; Leverett D; Oorts K; Smolders E
    Environ Toxicol Chem; 2018 Aug; 37(8):2123-2131. PubMed ID: 29691884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodynamics of Silver Nanoparticles in an Estuarine Oyster Revealed by
    Shao Z; Wang WX
    Environ Sci Technol; 2020 Jan; 54(2):965-974. PubMed ID: 31870149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.