BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36343876)

  • 1. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model.
    Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P
    Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose.
    Dvořák P; de Lorenzo V
    Metab Eng; 2018 Jul; 48():94-108. PubMed ID: 29864584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of d-xylose to d-xylonate coupled to medium-chain-length polyhydroxyalkanoate production in cellobiose-grown Pseudomonas putida EM42.
    Dvořák P; Kováč J; de Lorenzo V
    Microb Biotechnol; 2020 Jul; 13(4):1273-1283. PubMed ID: 32363744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering glucose metabolism for enhanced muconic acid production in Pseudomonas putida KT2440.
    Bentley GJ; Narayanan N; Jha RK; Salvachúa D; Elmore JR; Peabody GL; Black BA; Ramirez K; De Capite A; Michener WE; Werner AZ; Klingeman DM; Schindel HS; Nelson R; Foust L; Guss AM; Dale T; Johnson CW; Beckham GT
    Metab Eng; 2020 May; 59():64-75. PubMed ID: 31931111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida.
    Borrero-de Acuña JM; Bielecka A; Häussler S; Schobert M; Jahn M; Wittmann C; Jahn D; Poblete-Castro I
    Microb Cell Fact; 2014 Jun; 13():88. PubMed ID: 24948031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose.
    Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of wild-type KT2440 and genome-reduced EM42 Pseudomonas putida strains for muconate production from aromatic compounds and glucose.
    Amendola CR; Cordell WT; Kneucker CM; Szostkiewicz CJ; Ingraham MA; Monninger M; Wilton R; Pfleger BF; Salvachúa D; Johnson CW; Beckham GT
    Metab Eng; 2024 Jan; 81():88-99. PubMed ID: 38000549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440.
    Zhang Y; Liu H; Liu Y; Huo K; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2021 Nov; 191():608-617. PubMed ID: 34582907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 10. Heterologous expression of a glycosyl hydrolase and cellular reprogramming enable Zymomonas mobilis growth on cellobiose.
    Kurumbang NP; Vera JM; Hebert AS; Coon JJ; Landick R
    PLoS One; 2020; 15(8):e0226235. PubMed ID: 32797046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose.
    Meijnen JP; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering
    Wang Y; Zheng J; Xue Y; Yu B
    J Agric Food Chem; 2024 Mar; 72(12):6500-6508. PubMed ID: 38470347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Display of Designer Protein Scaffolds on Genome-Reduced Strains of
    Dvořák P; Bayer EA; de Lorenzo V
    ACS Synth Biol; 2020 Oct; 9(10):2749-2764. PubMed ID: 32877604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin.
    Johnson CW; Beckham GT
    Metab Eng; 2015 Mar; 28():240-247. PubMed ID: 25617773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics.
    Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E
    Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Escherichia coli cells for cellobiose assimilation through a phosphorolytic mechanism.
    Sekar R; Shin HD; Chen R
    Appl Environ Microbiol; 2012 Mar; 78(5):1611-4. PubMed ID: 22194295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Pseudomonas putida for improved utilization of syringyl aromatics.
    Mueller J; Willett H; Feist AM; Niu W
    Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.