BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36343876)

  • 21. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering.
    Liu H; Chen Y; Zhang Y; Zhao W; Guo H; Wang S; Xia W; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2022 Jun; 209(Pt A):117-124. PubMed ID: 35395277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.
    Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J
    Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.
    Simon O; Klaiber I; Huber A; Pfannstiel J
    J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H; Seo SO; Oh EJ; Seo JH; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of Uncharacterized Target Genes of MxtR/ErdR to Carbon Source Utilization by Pseudomonas putida KT2440.
    Henríquez T; Hsu JS; Hernandez JS; Kuppermann S; Eder M; Jung H
    Microbiol Spectr; 2023 Feb; 11(1):e0292322. PubMed ID: 36511656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous production of d-lactic acid from cellobiose in cell recycle fermentation using β-glucosidase-displaying Escherichia coli.
    Aso Y; Tsubaki M; Dang Long BH; Murakami R; Nagata K; Okano H; Phuong Dung NT; Ohara H
    J Biosci Bioeng; 2019 Apr; 127(4):441-446. PubMed ID: 30316699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates.
    Poblete-Castro I; Binger D; Rodrigues A; Becker J; Martins Dos Santos VA; Wittmann C
    Metab Eng; 2013 Jan; 15():113-23. PubMed ID: 23164576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival.
    Sohn SB; Kim TY; Park JM; Lee SY
    Biotechnol J; 2010 Jul; 5(7):739-50. PubMed ID: 20540110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An evaluation of cellulose saccharification and fermentation with an engineered Saccharomyces cerevisiae capable of cellobiose and xylose utilization.
    Fox JM; Levine SE; Blanch HW; Clark DS
    Biotechnol J; 2012 Mar; 7(3):361-73. PubMed ID: 22228702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica.
    Lane S; Zhang S; Wei N; Rao C; Jin YS
    Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muconic acid production from glucose and xylose in Pseudomonas putida via evolution and metabolic engineering.
    Ling C; Peabody GL; Salvachúa D; Kim YM; Kneucker CM; Calvey CH; Monninger MA; Munoz NM; Poirier BC; Ramirez KJ; St John PC; Woodworth SP; Magnuson JK; Burnum-Johnson KE; Guss AM; Johnson CW; Beckham GT
    Nat Commun; 2022 Aug; 13(1):4925. PubMed ID: 35995792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid.
    Elmore JR; Dexter GN; Salvachúa D; O'Brien M; Klingeman DM; Gorday K; Michener JK; Peterson DJ; Beckham GT; Guss AM
    Metab Eng; 2020 Nov; 62():62-71. PubMed ID: 32828991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties.
    Kohlstedt M; Weimer A; Weiland F; Stolzenberger J; Selzer M; Sanz M; Kramps L; Wittmann C
    Metab Eng; 2022 Jul; 72():337-352. PubMed ID: 35545205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved cellobiose utilization in E. coli by including both hydrolysis and phosphorolysis mechanisms.
    Rutter C; Chen R
    Biotechnol Lett; 2014 Feb; 36(2):301-7. PubMed ID: 24101240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise Genomic Riboregulator Control of Metabolic Flux in Microbial Systems.
    Pandey N; Davison SA; Krishnamurthy M; Trettel DS; Lo CC; Starkenburg S; Wozniak KL; Kern TL; Reardon SD; Unkefer CJ; Hennelly SP; Dale T
    ACS Synth Biol; 2022 Oct; 11(10):3216-3227. PubMed ID: 36130255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyruvate Production by Escherichia coli by Use of Pyruvate Dehydrogenase Variants.
    Moxley WC; Eiteman MA
    Appl Environ Microbiol; 2021 Jun; 87(13):e0048721. PubMed ID: 33863707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains.
    Poblete-Castro I; Rodriguez AL; Lam CM; Kessler W
    J Microbiol Biotechnol; 2014 Jan; 24(1):59-69. PubMed ID: 24150495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.