These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36343906)

  • 1. Development and optimization of microfluidic assisted manufacturing process to produce PLGA nanoparticles.
    Chiesa E; Bellotti M; Caimi A; Conti B; Dorati R; Conti M; Genta I; Auricchio F
    Int J Pharm; 2022 Dec; 629():122368. PubMed ID: 36343906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 5-fluorouracil-loaded PLGA nanoparticles with toroidal microfluidic system and optimization of process variables by design of experiments.
    Turkmen Koc SN; Conger E; Ozturk S; Eroglu I; Ulubayram K
    Int J Pharm; 2024 Sep; 662():124501. PubMed ID: 39053677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics.
    Bai X; Tang S; Butterworth S; Tirella A
    Biomater Adv; 2023 Nov; 154():213649. PubMed ID: 37820459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics.
    Martins C; Sarmento B
    Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
    Li X; Jiang X
    Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform.
    Bao Y; Maeki M; Ishida A; Tani H; Tokeshi M
    PLoS One; 2022; 17(8):e0271050. PubMed ID: 35925917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics.
    Roces CB; Christensen D; Perrie Y
    Drug Deliv Transl Res; 2020 Jun; 10(3):582-593. PubMed ID: 31919746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles.
    Operti MC; Fecher D; van Dinther EAW; Grimm S; Jaber R; Figdor CG; Tagit O
    Int J Pharm; 2018 Oct; 550(1-2):140-148. PubMed ID: 30144511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.
    Chiesa E; Dorati R; Modena T; Conti B; Genta I
    Int J Pharm; 2018 Jan; 536(1):165-177. PubMed ID: 29175645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor.
    Xu J; Zhang S; Machado A; Lecommandoux S; Sandre O; Gu F; Colin A
    Sci Rep; 2017 Jul; 7(1):4794. PubMed ID: 28684775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Assisted Nanoprecipitation of PLGA Nanoparticles for Curcumin Delivery to Leukemia Jurkat Cells.
    Leung MHM; Shen AQ
    Langmuir; 2018 Apr; 34(13):3961-3970. PubMed ID: 29544247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of Phe-Tyr dipeptide and preparation, characterization, cytotoxicity studies of Phe-Tyr dipeptide loaded PLGA nanoparticles for the treatment of hypertension.
    Kecel-Gündüz S; Budama-Kilinc Y; Cakir Koc R; Kökcü Y; Bicak B; Aslan B; Özel AE
    J Biomol Struct Dyn; 2018 Aug; 36(11):2893-2907. PubMed ID: 28835169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scale up, optimization and stability analysis of Curcumin C3 complex-loaded nanoparticles for cancer therapy.
    Ranjan AP; Mukerjee A; Helson L; Vishwanatha JK
    J Nanobiotechnology; 2012 Aug; 10():38. PubMed ID: 22937885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy.
    Martins C; Araújo F; Gomes MJ; Fernandes C; Nunes R; Li W; Santos HA; Borges F; Sarmento B
    Eur J Pharm Biopharm; 2019 May; 138():111-124. PubMed ID: 29397261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Statistical Optimization of Poly (Lactic-Co-Glycolic Acid) Nanoparticles Encapsulating GLP1 Analog Designed for Oral Delivery.
    Ismail R; Sovány T; Gácsi A; Ambrus R; Katona G; Imre N; Csóka I
    Pharm Res; 2019 May; 36(7):99. PubMed ID: 31087188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing biodegradable nanoparticle size for tissue-specific delivery.
    Mandl HK; Quijano E; Suh HW; Sparago E; Oeck S; Grun M; Glazer PM; Saltzman WM
    J Control Release; 2019 Nov; 314():92-101. PubMed ID: 31654688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roadmap to micro: Generation of micron-sized polymeric particles using a commercial microfluidic system.
    Cruz-Acuña M; Kakwere H; Lewis JS
    J Biomed Mater Res A; 2022 May; 110(5):1121-1133. PubMed ID: 35073454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encapsulation of a highly hydrophilic drug in polymeric particles: A comparative study of batch and microfluidic processes.
    Aboelela SS; Ibrahim M; Badruddoza AZM; Tran V; Ferri JK; Roper TD
    Int J Pharm; 2021 Sep; 606():120906. PubMed ID: 34298100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of polymeric nanoparticle intracellular targeting overcomes chemodrug resistance in human primary patient breast cancer cells.
    Abou-El-Naga AM; Mutawa G; El-Sherbiny IM; Mousa SA
    Int J Nanomedicine; 2018; 13():8153-8164. PubMed ID: 30555232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery.
    Rafiei P; Haddadi A
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109950. PubMed ID: 31499976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.