These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 36344232)

  • 1. [Research progress in non-coding RNAs in mediating immune responses of macrophages to
    Shi YT; Dong J; Zhang ZD; Pan LP
    Zhonghua Jie He He Hu Xi Za Zhi; 2022 Nov; 45(11):1146-1152. PubMed ID: 36344232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of non-coding RNA on macrophage modification in tuberculosis infection.
    Wang Z; Xu H; Wei Z; Jia Y; Wu Y; Qi X; Li Y; Gao X
    Microb Pathog; 2020 Dec; 149():104592. PubMed ID: 33098931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Shim D; Kim H; Shin SJ
    Front Immunol; 2020; 11():910. PubMed ID: 32477367
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Bo H; Moure UAE; Yang Y; Pan J; Li L; Wang M; Ke X; Cui H
    Front Cell Infect Microbiol; 2023; 13():1062963. PubMed ID: 36936766
    [No Abstract]   [Full Text] [Related]  

  • 6. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2.
    Kim JK; Lee HM; Park KS; Shin DM; Kim TS; Kim YS; Suh HW; Kim SY; Kim IS; Kim JM; Son JW; Sohn KM; Jung SS; Chung C; Han SB; Yang CS; Jo EK
    Autophagy; 2017 Feb; 13(2):423-441. PubMed ID: 27764573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to
    Lugo-Villarino G; Troegeler A; Balboa L; Lastrucci C; Duval C; Mercier I; Bénard A; Capilla F; Al Saati T; Poincloux R; Kondova I; Verreck FAW; Cougoule C; Maridonneau-Parini I; Sasiain MDC; Neyrolles O
    Front Immunol; 2018; 9():1123. PubMed ID: 29946317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key Macrophage Responses to Infection With
    Looney M; Lorenc R; Halushka MK; Karakousis PC
    Front Immunol; 2021; 12():685237. PubMed ID: 34140955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation.
    Zhang D; Yi Z; Fu Y
    J Cell Biochem; 2019 Apr; 120(4):5889-5896. PubMed ID: 30378171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural and trained innate immunity against Mycobacterium tuberculosis.
    Ferluga J; Yasmin H; Al-Ahdal MN; Bhakta S; Kishore U
    Immunobiology; 2020 May; 225(3):151951. PubMed ID: 32423788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterium tuberculosis PPE51 Inhibits Autophagy by Suppressing Toll-Like Receptor 2-Dependent Signaling.
    Strong EJ; Wang J; Ng TW; Porcelli SA; Lee S
    mBio; 2022 Jun; 13(3):e0297421. PubMed ID: 35467412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibiotic Treatment Shapes the Antigenic Environment During Chronic TB Infection, Offering Novel Targets for Therapeutic Vaccination.
    Chuang YM; Dutta NK; Gordy JT; Campodónico VL; Pinn ML; Markham RB; Hung CF; Karakousis PC
    Front Immunol; 2020; 11():680. PubMed ID: 32411131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling methylation changes of host macrophages in Mycobacterium tuberculosis infection.
    Zheng L; Leung ET; Wong HK; Lui G; Lee N; To KF; Choy KW; Chan RC; Ip M
    Tuberculosis (Edinb); 2016 May; 98():139-48. PubMed ID: 27156630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GM-CSF Dependent Differential Control of
    Mishra A; Singh VK; Actor JK; Hunter RL; Jagannath C; Subbian S; Khan A
    Front Immunol; 2020; 11():1599. PubMed ID: 32793233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Transcriptional Foundations of Sp110-mediated Macrophage (RAW264.7) Resistance to Mycobacterium tuberculosis H37Ra.
    Wu Y; Guo Z; Yao K; Miao Y; Liang S; Liu F; Wang Y; Zhang Y
    Sci Rep; 2016 Feb; 6():22041. PubMed ID: 26912204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis.
    Shen P; Li Q; Ma J; Tian M; Hong F; Zhai X; Li J; Huang H; Shi C
    BMC Microbiol; 2017 Aug; 17(1):185. PubMed ID: 28835201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristic genes in THP‑1 derived macrophages infected with Mycobacterium tuberculosis H37Rv strain identified by integrating bioinformatics methods.
    Zhang YW; Lin Y; Yu HY; Tian RN; Li F
    Int J Mol Med; 2019 Oct; 44(4):1243-1254. PubMed ID: 31364746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review.
    Kiran D; Podell BK; Chambers M; Basaraba RJ
    Semin Immunopathol; 2016 Mar; 38(2):167-83. PubMed ID: 26510950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pasakbumin A controls the growth of Mycobacterium tuberculosis by enhancing the autophagy and production of antibacterial mediators in mouse macrophages.
    Lee HJ; Ko HJ; Kim SH; Jung YJ
    PLoS One; 2019; 14(3):e0199799. PubMed ID: 30865638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical model of the initial interaction between Mycobacterium tuberculosis and macrophages.
    Pienaar E; Lerm M
    J Theor Biol; 2014 Feb; 342():23-32. PubMed ID: 24112967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.