BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 36344295)

  • 21. 3D bioprinting in orthopedics translational research.
    Zheng X; Huang J; Lin J; Yang D; Xu T; Chen D; Zan X; Wu A
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1172-1187. PubMed ID: 31124402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Challenges in Three-Dimensional Printing of Bone Substitutes.
    Masaeli R; Zandsalimi K; Rasoulianboroujeni M; Tayebi L
    Tissue Eng Part B Rev; 2019 Oct; 25(5):387-397. PubMed ID: 31144596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting.
    Alizadeh P; Soltani M; Tutar R; Hoque Apu E; Maduka CV; Unluturk BD; Contag CH; Ashammakhi N
    Essays Biochem; 2021 Aug; 65(3):441-466. PubMed ID: 34296738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D bioprinting of tissues and organs.
    Murphy SV; Atala A
    Nat Biotechnol; 2014 Aug; 32(8):773-85. PubMed ID: 25093879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Review of Bioprinting in Regenerative Medicine: Naturally Derived Bioinks and Stem Cells.
    Moghaddam AS; Khonakdar HA; Arjmand M; Jafari SH; Bagher Z; Moghaddam ZS; Chimerad M; Sisakht MM; Shojaei S
    ACS Appl Bio Mater; 2021 May; 4(5):4049-4070. PubMed ID: 35006822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting.
    Xu J; Zhang M; Du W; Zhao J; Ling G; Zhang P
    Int J Biol Macromol; 2022 Oct; 219():545-557. PubMed ID: 35907459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D bioprinting in cardiac tissue engineering.
    Wang Z; Wang L; Li T; Liu S; Guo B; Huang W; Wu Y
    Theranostics; 2021; 11(16):7948-7969. PubMed ID: 34335973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
    Duan B
    Ann Biomed Eng; 2017 Jan; 45(1):195-209. PubMed ID: 27066785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organ Bioprinting: Are We There Yet?
    Gao G; Huang Y; Schilling AF; Hubbell K; Cui X
    Adv Healthc Mater; 2018 Jan; 7(1):. PubMed ID: 29193879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
    Salaris F; Rosa A
    Brain Res; 2019 Nov; 1723():146393. PubMed ID: 31425681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Bioprinting: The Emergence of Programmable Biodesign.
    Correia Carreira S; Begum R; Perriman AW
    Adv Healthc Mater; 2020 Aug; 9(15):e1900554. PubMed ID: 31407502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developments and Opportunities for 3D Bioprinted Organoids.
    Ren Y; Yang X; Ma Z; Sun X; Zhang Y; Li W; Yang H; Qiang L; Yang Z; Liu Y; Deng C; Zhou L; Wang T; Lin J; Li T; Wu T; Wang J
    Int J Bioprint; 2021; 7(3):364. PubMed ID: 34286150
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Bioprinting and Its Application to Military Medicine.
    Betz JF; Ho VB; Gaston JD
    Mil Med; 2020 Sep; 185(9-10):e1510-e1519. PubMed ID: 32514549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies.
    Yazdanpanah Z; Johnston JD; Cooper DML; Chen X
    Front Bioeng Biotechnol; 2022; 10():824156. PubMed ID: 35480972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
    Li YC; Zhang YS; Akpek A; Shin SR; Khademhosseini A
    Biofabrication; 2016 Dec; 9(1):012001. PubMed ID: 27910820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Bioprinting for Vascularized Tissue Fabrication.
    Richards D; Jia J; Yost M; Markwald R; Mei Y
    Ann Biomed Eng; 2017 Jan; 45(1):132-147. PubMed ID: 27230253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.