These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 36344295)

  • 41. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-dimensional bioprinting in tissue engineering and regenerative medicine.
    Gao G; Cui X
    Biotechnol Lett; 2016 Feb; 38(2):203-11. PubMed ID: 26466597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-Dimensional Bioprinting of Decellularized Extracellular Matrix-Based Bioinks for Tissue Engineering.
    Zhang CY; Fu CP; Li XY; Lu XC; Hu LG; Kankala RK; Wang SB; Chen AZ
    Molecules; 2022 May; 27(11):. PubMed ID: 35684380
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Additive manufacturing of bioactive glass biomaterials.
    Simorgh S; Alasvand N; Khodadadi M; Ghobadi F; Malekzadeh Kebria M; Brouki Milan P; Kargozar S; Baino F; Mobasheri A; Mozafari M
    Methods; 2022 Dec; 208():75-91. PubMed ID: 36334889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Novel 3D Bioprinter Using Direct-Volumetric Drop-On-Demand Technology for Fabricating Micro-Tissues and Drug-Delivery.
    Grottkau BE; Hui Z; Pang Y
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.
    Chen X; Han S; Wu W; Wu Z; Yuan Y; Wu J; Liu C
    Small; 2022 Sep; 18(36):e2106824. PubMed ID: 35060321
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advances in bioprinting using additive manufacturing.
    Singh M; Jonnalagadda S
    Eur J Pharm Sci; 2020 Feb; 143():105167. PubMed ID: 31778785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 3D bioprinting for drug discovery and development in pharmaceutics.
    Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT
    Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip.
    Zhang YS; Arneri A; Bersini S; Shin SR; Zhu K; Goli-Malekabadi Z; Aleman J; Colosi C; Busignani F; Dell'Erba V; Bishop C; Shupe T; Demarchi D; Moretti M; Rasponi M; Dokmeci MR; Atala A; Khademhosseini A
    Biomaterials; 2016 Dec; 110():45-59. PubMed ID: 27710832
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.
    Magin CM; Alge DL; Anseth KS
    Biomed Mater; 2016 Mar; 11(2):022001. PubMed ID: 26942469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioengineering of High Cell Density Tissues with Hierarchical Vascular Networks for Ex Vivo Whole Organs.
    Wu P; Asada H; Hakamada M; Mabuchi M
    Adv Mater; 2023 Mar; 35(9):e2209149. PubMed ID: 36545785
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Construction and Application of Three-Dimensional Biomaterials.
    Wang J; Yu Y; Guo J; Lu W; Wei Q; Zhao Y
    Adv Biosyst; 2020 Feb; 4(2):e1900238. PubMed ID: 32293130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art.
    Kyle S; Jessop ZM; Al-Sabah A; Whitaker IS
    Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28558161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Think outside the box: 3D bioprinting concepts for biotechnological applications - recent developments and future perspectives.
    Krujatz F; Dani S; Windisch J; Emmermacher J; Hahn F; Mosshammer M; Murthy S; Steingröwer J; Walther T; Kühl M; Gelinsky M; Lode A
    Biotechnol Adv; 2022 Sep; 58():107930. PubMed ID: 35257786
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current Progress in 3D Bioprinting of Tissue Analogs.
    Zhang S; Wang H
    SLAS Technol; 2019 Feb; 24(1):70-78. PubMed ID: 30257593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.