BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 36344372)

  • 1. DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles.
    Overwijn D; Hondele M
    Trends Biochem Sci; 2023 Mar; 48(3):244-258. PubMed ID: 36344372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEAD-box ATPases are global regulators of phase-separated organelles.
    Hondele M; Sachdev R; Heinrich S; Wang J; Vallotton P; Fontoura BMA; Weis K
    Nature; 2019 Sep; 573(7772):144-148. PubMed ID: 31435012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation.
    Weis K
    Biol Chem; 2021 Apr; 402(5):653-661. PubMed ID: 33818025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates.
    Weis K; Hondele M
    Annu Rev Biochem; 2022 Jun; 91():197-219. PubMed ID: 35303788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic arrest and aging of biomolecular condensates are modulated by low-complexity domains, RNA and biochemical activity.
    Linsenmeier M; Hondele M; Grigolato F; Secchi E; Weis K; Arosio P
    Nat Commun; 2022 May; 13(1):3030. PubMed ID: 35641495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in
    Whitman BT; Wang Y; Murray CRA; Glover MJN; Owttrim GW
    Appl Environ Microbiol; 2023 Apr; 89(4):e0001523. PubMed ID: 36920190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-induced cross-linking of a biomolecular condensate.
    Coupe S; Fakhri N
    Biophys J; 2024 Jun; 123(11):1356-1366. PubMed ID: 37480229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-induced crosslinking of a biomolecular condensate.
    Coupe S; Fakhri N
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A guide to membraneless organelles and their various roles in gene regulation.
    Hirose T; Ninomiya K; Nakagawa S; Yamazaki T
    Nat Rev Mol Cell Biol; 2023 Apr; 24(4):288-304. PubMed ID: 36424481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates.
    Ma W; Zhen G; Xie W; Mayr C
    Elife; 2021 Mar; 10():. PubMed ID: 33650968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence variations of phase-separating proteins and resources for studying biomolecular condensates.
    Guo G; Wang X; Zhang Y; Li T
    Acta Biochim Biophys Sin (Shanghai); 2023 Jul; 55(7):1119-1132. PubMed ID: 37464880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing regulation through biomolecular condensates and membraneless organelles.
    Giudice J; Jiang H
    Nat Rev Mol Cell Biol; 2024 May; ():. PubMed ID: 38773325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleolus activity-dependent recruitment and biomolecular condensation by pH sensing.
    Aryan F; Detrés D; Luo CC; Kim SX; Shah AN; Bartusel M; Flynn RA; Calo E
    Mol Cell; 2023 Dec; 83(23):4413-4423.e10. PubMed ID: 37979585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomolecular condensates in cell biology and virology: Phase-separated membraneless organelles (MLOs).
    Sehgal PB; Westley J; Lerea KM; DiSenso-Browne S; Etlinger JD
    Anal Biochem; 2020 May; 597():113691. PubMed ID: 32194074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses.
    Li Q; Liu Y; Zhang X
    Plant Cell; 2024 Jan; 36(2):227-245. PubMed ID: 37772963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of liquid-liquid phase separation in bacterial RNA metabolism.
    Nandana V; Schrader JM
    Curr Opin Microbiol; 2021 Jun; 61():91-98. PubMed ID: 33878678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion binding with charge inversion combined with screening modulates DEAD box helicase phase transitions.
    Crabtree MD; Holland J; Pillai AS; Kompella PS; Babl L; Turner NN; Eaton JT; Hochberg GKA; Aarts DGAL; Redfield C; Baldwin AJ; Nott TJ
    Cell Rep; 2023 Nov; 42(11):113375. PubMed ID: 37980572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms and regulation underlying membraneless organelle plasticity control.
    Ismail H; Liu X; Yang F; Li J; Zahid A; Dou Z; Liu X; Yao X
    J Mol Cell Biol; 2021 Aug; 13(4):239-258. PubMed ID: 33914074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal dynamic regulation of membraneless organelles by chaperone networks.
    Li D; Liu C
    Trends Cell Biol; 2022 Jan; 32(1):1-3. PubMed ID: 34544610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.