These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36344372)

  • 21. Spatiotemporal dynamic regulation of membraneless organelles by chaperone networks.
    Li D; Liu C
    Trends Cell Biol; 2022 Jan; 32(1):1-3. PubMed ID: 34544610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomolecular Condensates: Sequence Determinants of Phase Separation, Microstructural Organization, Enzymatic Activity, and Material Properties.
    Schuster BS; Regy RM; Dolan EM; Kanchi Ranganath A; Jovic N; Khare SD; Shi Z; Mittal J
    J Phys Chem B; 2021 Apr; 125(14):3441-3451. PubMed ID: 33661634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Happy birthday: 25 years of DEAD-box proteins.
    Linder P; Fuller-Pace F
    Methods Mol Biol; 2015; 1259():17-33. PubMed ID: 25579577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling compartmentalization by non-membrane-bound organelles.
    Wheeler RJ; Hyman AA
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Function moves biomolecular condensates in phase space.
    Feric M; Misteli T
    Bioessays; 2022 May; 44(5):e2200001. PubMed ID: 35243657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Chau Y
    ACS Macro Lett; 2022 Apr; 11(4):562-567. PubMed ID: 35575335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene.
    Hoffmann C; Murastov G; Tromm JV; Moog JB; Aslam MA; Matkovic A; Milovanovic D
    Nano Lett; 2023 Dec; 23(23):10796-10801. PubMed ID: 37862690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomolecular Condensates and Gene Activation in Development and Disease.
    Sabari BR
    Dev Cell; 2020 Oct; 55(1):84-96. PubMed ID: 33049213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequestration within biomolecular condensates inhibits Aβ-42 amyloid formation.
    Küffner AM; Linsenmeier M; Grigolato F; Prodan M; Zuccarini R; Capasso Palmiero U; Faltova L; Arosio P
    Chem Sci; 2021 Feb; 12(12):4373-4382. PubMed ID: 34163700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DMA-tudor interaction modules control the specificity of in vivo condensates.
    Courchaine EM; Barentine AES; Straube K; Lee DR; Bewersdorf J; Neugebauer KM
    Cell; 2021 Jul; 184(14):3612-3625.e17. PubMed ID: 34115980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid Reversible Osmoregulation of Cytoplasmic Biomolecular Condensates of Human Interferon-α-Induced Antiviral MxA GTPase.
    Sehgal PB; Yuan H; Jin Y
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton.
    Koppers M; Özkan N; Farías GG
    Front Cell Dev Biol; 2020; 8():618733. PubMed ID: 33409284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird's-Eye View.
    Fefilova AS; Fonin AV; Vishnyakov IE; Kuznetsova IM; Turoverov KK
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563401
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates.
    Fonin AV; Antifeeva IA; Kuznetsova IM; Turoverov KK; Zaslavsky BY; Kulkarni P; Uversky VN
    Essays Biochem; 2022 Dec; 66(7):831-847. PubMed ID: 36350034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNAs, Phase Separation, and Membrane-Less Organelles: Are Post-Transcriptional Modifications Modulating Organelle Dynamics?
    Drino A; Schaefer MR
    Bioessays; 2018 Dec; 40(12):e1800085. PubMed ID: 30370622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological colloids: Unique properties of membraneless organelles in the cell.
    Bratek-Skicki A; Van Nerom M; Maes D; Tompa P
    Adv Colloid Interface Sci; 2022 Dec; 310():102777. PubMed ID: 36279601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase separation in biology and disease-a symposium report.
    Cable J; Brangwynne C; Seydoux G; Cowburn D; Pappu RV; Castañeda CA; Berchowitz LE; Chen Z; Jonikas M; Dernburg A; Mittag T; Fawzi NL
    Ann N Y Acad Sci; 2019 Sep; 1452(1):3-11. PubMed ID: 31199001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase transition modulation and biophysical characterization of biomolecular condensates using microfluidics.
    Chan KWY; Navi M; Kieda J; Moran T; Hammers D; Lee S; Tsai SSH
    Lab Chip; 2022 Jul; 22(14):2647-2656. PubMed ID: 35616128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.