These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36344372)

  • 41. The conformational plasticity of eukaryotic RNA-dependent ATPases.
    Ozgur S; Buchwald G; Falk S; Chakrabarti S; Prabu JR; Conti E
    FEBS J; 2015 Mar; 282(5):850-63. PubMed ID: 25645110
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RNA impacts formation of biomolecular condensates in the nucleus.
    Matsui S; Nozawa RS
    Biomed Res; 2021; 42(4):153-160. PubMed ID: 34380923
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reorganization of Cell Compartmentalization Induced by Stress.
    Fefilova AS; Antifeeva IA; Gavrilova AA; Turoverov KK; Kuznetsova IM; Fonin AV
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis.
    Emenecker RJ; Holehouse AS; Strader LC
    Cell Commun Signal; 2021 Jun; 19(1):65. PubMed ID: 34090478
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential roles of two DDX17 isoforms in the formation of membraneless organelles.
    Hirai Y; Domae E; Yoshikawa Y; Tomonaga K
    J Biochem; 2020 Jul; 168(1):33-40. PubMed ID: 32065632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ATPase activity of the DEAD-box protein Dhh1 controls processing body formation.
    Mugler CF; Hondele M; Heinrich S; Sachdev R; Vallotton P; Koek AY; Chan LY; Weis K
    Elife; 2016 Oct; 5():. PubMed ID: 27692063
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic biomolecular condensates to engineer eukaryotic cells.
    Reinkemeier CD; Lemke EA
    Curr Opin Chem Biol; 2021 Oct; 64():174-181. PubMed ID: 34600419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Initial heat analysis in dissociation isothermal titration calorimetry: An analytical tool for thermodynamic dissection of biomolecular condensates.
    Yun JN; Koh J
    Biochem Biophys Res Commun; 2022 May; 605():127-133. PubMed ID: 35325654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomolecular condensates in neurodegeneration and cancer.
    Spannl S; Tereshchenko M; Mastromarco GJ; Ihn SJ; Lee HO
    Traffic; 2019 Dec; 20(12):890-911. PubMed ID: 31606941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA helicases regulate RNA condensates.
    Fu XD
    Cell Res; 2020 Apr; 30(4):281-282. PubMed ID: 32152418
    [No Abstract]   [Full Text] [Related]  

  • 52. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
    Alshareedah I; Moosa MM; Pham M; Potoyan DA; Banerjee PR
    Nat Commun; 2021 Nov; 12(1):6620. PubMed ID: 34785657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multivalent interactions with RNA drive recruitment and dynamics in biomolecular condensates in
    Cabral SE; Otis JP; Mowry KL
    iScience; 2022 Aug; 25(8):104811. PubMed ID: 35982794
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spliceosomal DEAH-Box ATPases Remodel Pre-mRNA to Activate Alternative Splice Sites.
    Semlow DR; Blanco MR; Walter NG; Staley JP
    Cell; 2016 Feb; 164(5):985-98. PubMed ID: 26919433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of biomolecular condensates and protein phase separation with microfluidic technology.
    Linsenmeier M; Kopp MRG; Stavrakis S; de Mello A; Arosio P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118823. PubMed ID: 32800925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence That the Adenovirus Single-Stranded DNA Binding Protein Mediates the Assembly of Biomolecular Condensates to Form Viral Replication Compartments.
    Hidalgo P; Pimentel A; Mojica-Santamaría D; von Stromberg K; Hofmann-Sieber H; Lona-Arrona C; Dobner T; González RA
    Viruses; 2021 Sep; 13(9):. PubMed ID: 34578359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2022 Oct; 50(19):10817-10838. PubMed ID: 36243979
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mass Balance Imaging: A Phase Portrait Analysis for Characterizing Growth Kinetics of Biomolecular Condensates.
    Geisler J; Yan VT; Grill S; Narayanan A
    Methods Mol Biol; 2023; 2563():413-424. PubMed ID: 36227486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-Molecule Fluorescence Methods to Study Protein-RNA Interactions Underlying Biomolecular Condensates.
    Ganser LR; Ge Y; Myong S
    Methods Mol Biol; 2023; 2563():149-160. PubMed ID: 36227472
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles.
    Liu J; Zhorabek F; Zhang T; Lam JWY; Tang BZ; Chau Y
    Small; 2022 Jun; 18(25):e2201721. PubMed ID: 35596607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.