BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36344442)

  • 1. Chemical Synthesis of Proteins with Base-Labile Posttranslational Modifications Enabled by a Boc-SPPS Based General Strategy Towards Peptide C-Terminal Salicylaldehyde Esters.
    Ma W; Wu H; Liu S; Wei T; Li XD; Liu H; Li X
    Angew Chem Int Ed Engl; 2023 Jan; 62(1):e202214053. PubMed ID: 36344442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications.
    Liu H; Li X
    Acc Chem Res; 2018 Jul; 51(7):1643-1655. PubMed ID: 29979577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Synthesis of Peptides and Proteins Bearing Base-Labile Post-Translational Modifications: Evolution of the Methods in Four Decades.
    Ma W; Liu H; Li X
    Chembiochem; 2023 Oct; 24(20):e202300348. PubMed ID: 37380612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HF-Free Boc Synthesis of Peptide Thioesters for Ligation and Cyclization.
    Raz R; Burlina F; Ismail M; Downward J; Li J; Smerdon SJ; Quibell M; White PD; Offer J
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13174-13179. PubMed ID: 27654901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native Chemical Ligation via N-Acylurea Thioester Surrogates Obtained by Fmoc Solid-Phase Peptide Synthesis.
    Palà-Pujadas J; Blanco-Canosa JB
    Methods Mol Biol; 2020; 2133():141-161. PubMed ID: 32144666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The New Salicylaldehyde
    Huang DL; Li Y; Liang J; Yu L; Xue M; Cao XX; Xiao B; Tian CL; Liu L; Zheng JS
    J Am Chem Soc; 2020 May; 142(19):8790-8799. PubMed ID: 32286828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obviation of hydrogen fluoride in Boc chemistry solid phase peptide synthesis of peptide-
    Gates ZP; Dhayalan B; Kent SB
    Chem Commun (Camb); 2016 Nov; 52(97):13979-13982. PubMed ID: 27847960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of Boc and Fmoc SPPS strategies for the preparation of C-terminal peptide α-thiolesters: NY-ESO-1 ³⁹Cys-⁶⁸Ala-COSR.
    Harris PW; Brimble MA
    Biopolymers; 2013 Jul; 100(4):356-65. PubMed ID: 23444272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reversible protection strategy to improve Fmoc-SPPS of peptide thioesters by the N-Acylurea approach.
    Mahto SK; Howard CJ; Shimko JC; Ottesen JJ
    Chembiochem; 2011 Nov; 12(16):2488-94. PubMed ID: 21910203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boc-SPPS: Compatible Linker for the Synthesis of Peptide o-Aminoanilides.
    Weidmann J; Dimitrijević E; Hoheisel JD; Dawson PE
    Org Lett; 2016 Jan; 18(2):164-7. PubMed ID: 26702477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin.
    Dhayalan B; Mandal K; Rege N; Weiss MA; Eitel SH; Meier T; Schoenleber RO; Kent SB
    Chemistry; 2017 Jan; 23(7):1709-1716. PubMed ID: 27905149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences.
    Schnölzer M; Alewood P; Jones A; Alewood D; Kent SB
    Int J Pept Protein Res; 1992; 40(3-4):180-93. PubMed ID: 1478777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safe and efficient Boc-SPPS for the synthesis of glycopeptide-α-thioesters.
    Izumi M; Murakami M; Okamoto R; Kajihara Y
    J Pept Sci; 2014 Feb; 20(2):98-101. PubMed ID: 25975420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Making Ends Meet: Microwave-Accelerated Synthesis of Cyclic and Disulfide Rich Proteins Via In Situ Thioesterification and Native Chemical Ligation.
    Gunasekera S; Aboye TL; Madian WA; El-Seedi HR; Göransson U
    Int J Pept Res Ther; 2013 Mar; 19(1):43-54. PubMed ID: 23504256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of peptidyl salicylaldehyde esters and its use in cyclic peptide synthesis.
    Zhao JF; Zhang XH; Ding YJ; Yang YS; Bi XB; Liu CF
    Org Lett; 2013 Oct; 15(20):5182-5. PubMed ID: 24093761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Neutralization Protocols for Boc-SPPS.
    Adhikary R; Dawson PE
    Methods Mol Biol; 2020; 2103():29-40. PubMed ID: 31879917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative chemistries for the synthesis of thrombospondin-1 type 1 repeats.
    Tiefenbrunn TK; Blanco-Canosa J; Dawson PE
    Biopolymers; 2010; 94(4):405-13. PubMed ID: 20593462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide 2-formylthiophenol esters do not proceed through a Ser/Thr ligation pathway, but participate in a peptide aminolysis to enable peptide condensation and cyclization.
    Tung CL; Wong CT; Li X
    Org Biomol Chem; 2015 Jul; 13(25):6922-6. PubMed ID: 26013965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removable Backbone Modification (RBM) Strategy for the Chemical Synthesis of Hydrophobic Peptides/Proteins.
    Huang DL; Li Y; Zheng JS
    Methods Mol Biol; 2022; 2530():241-256. PubMed ID: 35761053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removable Backbone Modification Method for the Chemical Synthesis of Membrane Proteins.
    Li JB; Tang S; Zheng JS; Tian CL; Liu L
    Acc Chem Res; 2017 May; 50(5):1143-1153. PubMed ID: 28374993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.