These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 36344530)
1. Boosting CO hydrogenation towards C Xu M; Qin X; Xu Y; Zhang X; Zheng L; Liu JX; Wang M; Liu X; Ma D Nat Commun; 2022 Nov; 13(1):6720. PubMed ID: 36344530 [TBL] [Abstract][Full Text] [Related]
2. Insights into Interfacial Synergistic Catalysis over Ni@TiO Xu M; Yao S; Rao D; Niu Y; Liu N; Peng M; Zhai P; Man Y; Zheng L; Wang B; Zhang B; Ma D; Wei M J Am Chem Soc; 2018 Sep; 140(36):11241-11251. PubMed ID: 30016862 [TBL] [Abstract][Full Text] [Related]
3. Titania-Supported Ni Li Z; Zhang X; Liu J; Shi R; Waterhouse GIN; Wen XD; Zhang T Adv Mater; 2021 Sep; 33(36):e2103248. PubMed ID: 34302400 [TBL] [Abstract][Full Text] [Related]
4. Structure Sensitivity of Au-TiO Zhang Y; Liu JX; Qian K; Jia A; Li D; Shi L; Hu J; Zhu J; Huang W Angew Chem Int Ed Engl; 2021 May; 60(21):12074-12081. PubMed ID: 33709509 [TBL] [Abstract][Full Text] [Related]
5. Cobalt-Nickel Nanoparticles Supported on Reducible Oxides as Fischer-Tropsch Catalysts. Hernández Mejía C; van der Hoeven JES; de Jongh PE; de Jong KP ACS Catal; 2020 Jul; 10(13):7343-7354. PubMed ID: 32655980 [TBL] [Abstract][Full Text] [Related]
6. Facet-Dependent Oxidative Strong Metal-Support Interactions of Palladium-TiO Tang M; Li S; Chen S; Ou Y; Hiroaki M; Yuan W; Zhu B; Yang H; Gao Y; Zhang Z; Wang Y Angew Chem Int Ed Engl; 2021 Oct; 60(41):22339-22344. PubMed ID: 34352928 [TBL] [Abstract][Full Text] [Related]
7. Control of metal-support interaction for tunable CO hydrogenation performance over Ru/TiO Lin H; Zhang W; Shen H; Yu H; An Y; Lin T; Zhong L Nanoscale; 2024 Mar; 16(12):6151-6162. PubMed ID: 38445306 [TBL] [Abstract][Full Text] [Related]
8. Tandem Pt/TiO Kang X; Liu J; Wang D; Tian C; Fu H J Colloid Interface Sci; 2025 Jan; 678(Pt A):1165-1175. PubMed ID: 39284271 [TBL] [Abstract][Full Text] [Related]
9. Capturing the Genesis of an Active Fischer-Tropsch Synthesis Catalyst with Operando X-ray Nanospectroscopy. van Ravenhorst IK; Vogt C; Oosterbeek H; Bossers KW; Moya-Cancino JG; van Bavel AP; van der Eerden AMJ; Vine D; de Groot FMF; Meirer F; Weckhuysen BM Angew Chem Int Ed Engl; 2018 Sep; 57(37):11957-11962. PubMed ID: 30070756 [TBL] [Abstract][Full Text] [Related]
10. LED-driven controlled deposition of Ni onto TiO Sanz-Marco A; Hueso JL; Sebastian V; Nielsen D; Mossin S; Holgado JP; Bueno-Alejo CJ; Balas F; Santamaria J Nanoscale Adv; 2021 Jun; 3(13):3788-3798. PubMed ID: 36133006 [TBL] [Abstract][Full Text] [Related]
11. Direct Evidence of Dynamic Metal Support Interactions in Co/TiO Salusso D; Scarfiello C; Efimenko A; Pham Minh D; Serp P; Soulantica K; Zafeiratos S Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836313 [TBL] [Abstract][Full Text] [Related]
12. Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure. Choi BK; Park YH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2015 Jul; 15(7):5259-63. PubMed ID: 26373119 [TBL] [Abstract][Full Text] [Related]
13. Boosting Low-Temperature CO Ye R; Ma L; Hong X; Reina TR; Luo W; Kang L; Feng G; Zhang R; Fan M; Zhang R; Liu J Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202317669. PubMed ID: 38032335 [TBL] [Abstract][Full Text] [Related]
15. MOF-Derived Ru Sun J; Tao L; Ye C; Wang Y; Meng G; Lei H; Zheng S; Xing C; Tao X; Wu P; Chen J; Du S; Wang D; Li Y J Am Chem Soc; 2023 Apr; 145(13):7113-7122. PubMed ID: 36951270 [TBL] [Abstract][Full Text] [Related]
16. Hydroxylated TiO Wang CX; Liu HX; Gu H; Li JY; Lai XM; Fu XP; Wang WW; Fu Q; Wang FR; Ma C; Jia CJ Nat Commun; 2024 Sep; 15(1):8290. PubMed ID: 39333511 [TBL] [Abstract][Full Text] [Related]
17. Regulation of Strong Metal-Support Interaction by Alkaline Earth Metal Salts. Qiu G; Pei Q; Yu Y; Jing Z; Wang J; He T; Chen P Chem Asian J; 2021 Sep; 16(18):2633-2640. PubMed ID: 34288552 [TBL] [Abstract][Full Text] [Related]
18. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417 [TBL] [Abstract][Full Text] [Related]
19. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550 [TBL] [Abstract][Full Text] [Related]
20. Linear α-olefin production with Na-promoted Fe-Zn catalysts Yang S; Lee S; Kang SC; Han SJ; Jun KW; Lee KY; Kim YT RSC Adv; 2019 May; 9(25):14176-14187. PubMed ID: 35519344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]