These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 36345378)

  • 21. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agreement between clinician and reading center gradings of diabetic retinopathy severity level at baseline in a phase 2 study of intravitreal bevacizumab for diabetic macular edema.
    Scott IU; Bressler NM; Bressler SB; Browning DJ; Chan CK; Danis RP; Davis MD; Kollman C; Qin H;
    Retina; 2008 Jan; 28(1):36-40. PubMed ID: 18185135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images.
    Sedova A; Hajdu D; Datlinger F; Steiner I; Neschi M; Aschauer J; Gerendas BS; Schmidt-Erfurth U; Pollreisz A
    Eye (Lond); 2022 Mar; 36(3):510-516. PubMed ID: 35132211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness.
    Tufail A; Kapetanakis VV; Salas-Vega S; Egan C; Rudisill C; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Bailey C; Sadda S; Taylor P; Rudnicka AR
    Health Technol Assess; 2016 Dec; 20(92):1-72. PubMed ID: 27981917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital.
    Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J
    Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diabetic Retinopathy Screening Using Smartphone-Based Fundus Photography and Deep-Learning Artificial Intelligence in the Yucatan Peninsula: A Field Study.
    Wroblewski JJ; Sanchez-Buenfil E; Inciarte M; Berdia J; Blake L; Wroblewski S; Patti A; Suter G; Sanborn GE
    J Diabetes Sci Technol; 2023 Aug; ():19322968231194644. PubMed ID: 37641576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images.
    Olvera-Barrios A; Heeren TF; Balaskas K; Chambers R; Bolter L; Egan C; Tufail A; Anderson J
    Br J Ophthalmol; 2021 Feb; 105(2):265-270. PubMed ID: 32376611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.
    Heydon P; Egan C; Bolter L; Chambers R; Anderson J; Aldington S; Stratton IM; Scanlon PH; Webster L; Mann S; du Chemin A; Owen CG; Tufail A; Rudnicka AR
    Br J Ophthalmol; 2021 May; 105(5):723-728. PubMed ID: 32606081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of nonmydriatic digital retinal imaging versus dilated ophthalmic examination for nondiabetic eye disease in persons with diabetes.
    Chow SP; Aiello LM; Cavallerano JD; Katalinic P; Hock K; Tolson A; Kirby R; Bursell SE; Aiello LP
    Ophthalmology; 2006 May; 113(5):833-40. PubMed ID: 16650680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population.
    Shah A; Clarida W; Amelon R; Hernaez-Ortega MC; Navea A; Morales-Olivas J; Dolz-Marco R; Verbraak F; Jorda PP; van der Heijden AA; Peris Martinez C
    J Diabetes Sci Technol; 2021 May; 15(3):655-663. PubMed ID: 32174153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography.
    Lin DY; Blumenkranz MS; Brothers RJ; Grosvenor DM
    Am J Ophthalmol; 2002 Aug; 134(2):204-13. PubMed ID: 12140027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Web-based grading of compressed stereoscopic digital photography versus standard slide film photography for the diagnosis of diabetic retinopathy.
    Rudnisky CJ; Tennant MT; Weis E; Ting A; Hinz BJ; Greve MD
    Ophthalmology; 2007 Sep; 114(9):1748-54. PubMed ID: 17368543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectiveness and safety of screening for diabetic retinopathy with two nonmydriatic digital images compared with the seven standard stereoscopic photographic fields.
    Boucher MC; Gresset JA; Angioi K; Olivier S
    Can J Ophthalmol; 2003 Dec; 38(7):557-68. PubMed ID: 14740797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of dilated fundus examinations with seven-field stereo fundus photographs in the Veterans Affairs Diabetes Trial.
    Emanuele N; Klein R; Moritz T; Davis MD; Glander K; Anderson R; Reda D; Duckworth W; Abraira C;
    J Diabetes Complications; 2009; 23(5):323-9. PubMed ID: 18406632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients.
    Pei X; Yao X; Yang Y; Zhang H; Xia M; Huang R; Wang Y; Li Z
    Diabetes Res Clin Pract; 2022 Feb; 184():109190. PubMed ID: 35031348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevalence and associated factors of diabetic retinopathy among people with diabetes screened using fundus photography at a community diabetic retinopathy screening program in Nepal.
    Thapa R; Sharma S; Pradhan E; Duwal S; Poudel M; Shrestha KG; Paudyal GP
    BMC Ophthalmol; 2023 Oct; 23(1):429. PubMed ID: 37872518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of low-light nonmydriatic digital imaging with 35-mm ETDRS seven-standard field stereo color fundus photographs and clinical examination.
    Silva PS; Walia S; Cavallerano JD; Sun JK; Dunn C; Bursell SE; Aiello LM; Aiello LP
    Telemed J E Health; 2012 Sep; 18(7):492-9. PubMed ID: 22827402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
    Virgili G; Menchini F; Murro V; Peluso E; Rosa F; Casazza G
    Cochrane Database Syst Rev; 2011 Jul; (7):CD008081. PubMed ID: 21735421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diabetic retinopathy screening with confocal fundus camera and artificial intelligence - assisted grading.
    Piatti A; Rui C; Gazzina S; Tartaglino B; Romeo F; Manti R; Doglio M; Nada E; Giorda CB
    Eur J Ophthalmol; 2024 Aug; ():11206721241272229. PubMed ID: 39109554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study.
    Lois N; Cook JA; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ganchi F; Scanlon P; Sivaprasad S; Steel DH; Styles C; Azuara-Blanco A; Prior L; Waugh N;
    Ophthalmology; 2021 Apr; 128(4):561-573. PubMed ID: 33130144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.