These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36345613)

  • 21. Machine learning: its challenges and opportunities in plant system biology.
    Hesami M; Alizadeh M; Jones AMP; Torkamaneh D
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3507-3530. PubMed ID: 35575915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning approach for predicting functional Z-DNA regions using omics data.
    Beknazarov N; Jin S; Poptsova M
    Sci Rep; 2020 Nov; 10(1):19134. PubMed ID: 33154517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Promoting synergistic research and education in genomics and bioinformatics.
    Yang JY; Yang MQ; Zhu MM; Arabnia HR; Deng Y
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):I1. PubMed ID: 18366597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What machine learning can do for developmental biology.
    Villoutreix P
    Development; 2021 Jan; 148(1):. PubMed ID: 33431591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning and big data analytics in bipolar disorder: A position paper from the International Society for Bipolar Disorders Big Data Task Force.
    Passos IC; Ballester PL; Barros RC; Librenza-Garcia D; Mwangi B; Birmaher B; Brietzke E; Hajek T; Lopez Jaramillo C; Mansur RB; Alda M; Haarman BCM; Isometsa E; Lam RW; McIntyre RS; Minuzzi L; Kessing LV; Yatham LN; Duffy A; Kapczinski F
    Bipolar Disord; 2019 Nov; 21(7):582-594. PubMed ID: 31465619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.
    Kang T; Ding W; Zhang L; Ziemek D; Zarringhalam K
    BMC Bioinformatics; 2017 Dec; 18(1):565. PubMed ID: 29258445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-omic data integration and analysis using systems genomics approaches: methods and applications in animal production, health and welfare.
    Suravajhala P; Kogelman LJ; Kadarmideen HN
    Genet Sel Evol; 2016 Apr; 48(1):38. PubMed ID: 27130220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning meets omics: applications and perspectives.
    Li R; Li L; Xu Y; Yang J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning models in genomics; are we there yet?
    Koumakis L
    Comput Struct Biotechnol J; 2020; 18():1466-1473. PubMed ID: 32637044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning for plant genomics and crop improvement.
    Wang H; Cimen E; Singh N; Buckler E
    Curr Opin Plant Biol; 2020 Apr; 54():34-41. PubMed ID: 31986354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A primer on machine learning techniques for genomic applications.
    Monaco A; Pantaleo E; Amoroso N; Lacalamita A; Lo Giudice C; Fonzino A; Fosso B; Picardi E; Tangaro S; Pesole G; Bellotti R
    Comput Struct Biotechnol J; 2021; 19():4345-4359. PubMed ID: 34429852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes Júnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning and artificial intelligence in haematology.
    Shouval R; Fein JA; Savani B; Mohty M; Nagler A
    Br J Haematol; 2021 Jan; 192(2):239-250. PubMed ID: 32602593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VariantSpark: Cloud-based machine learning for association study of complex phenotype and large-scale genomic data.
    Bayat A; Szul P; O'Brien AR; Dunne R; Hosking B; Jain Y; Hosking C; Luo OJ; Twine N; Bauer DC
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32761098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate cancer phenotype prediction with AKLIMATE, a stacked kernel learner integrating multimodal genomic data and pathway knowledge.
    Uzunangelov V; Wong CK; Stuart JM
    PLoS Comput Biol; 2021 Apr; 17(4):e1008878. PubMed ID: 33861732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Genome-Based Model to Predict the Virulence of Pseudomonas aeruginosa Isolates.
    Pincus NB; Ozer EA; Allen JP; Nguyen M; Davis JJ; Winter DR; Chuang CH; Chiu CH; Zamorano L; Oliver A; Hauser AR
    mBio; 2020 Aug; 11(4):. PubMed ID: 32843552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interpretable machine learning methods for predictions in systems biology from omics data.
    Sidak D; Schwarzerová J; Weckwerth W; Waldherr S
    Front Mol Biosci; 2022; 9():926623. PubMed ID: 36387282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influenza virus genotype to phenotype predictions through machine learning: a systematic review.
    Borkenhagen LK; Allen MW; Runstadler JA
    Emerg Microbes Infect; 2021 Dec; 10(1):1896-1907. PubMed ID: 34498543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of microbial phenotypes based on comparative genomics.
    Feldbauer R; Schulz F; Horn M; Rattei T
    BMC Bioinformatics; 2015; 16 Suppl 14(Suppl 14):S1. PubMed ID: 26451672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying intragenic functional modules of genomic variations associated with cancer phenotypes by learning representation of association networks.
    Kim M; Huffman JE; Justice A; Goethert I; Agasthya G; ; Danciu I
    BMC Med Genomics; 2022 Jul; 15(1):151. PubMed ID: 35794577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.