These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 36346262)
1. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration. Angili SN; Morovvati MR; Kardan-Halvaei M; Saber-Samandari S; Razmjooee K; Abed AM; Toghraie D; Khandan A Int J Biol Macromol; 2023 Jan; 224():1152-1165. PubMed ID: 36346262 [TBL] [Abstract][Full Text] [Related]
2. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
3. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release. Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323 [TBL] [Abstract][Full Text] [Related]
4. Effect of Silicon Dioxide and Magnesium Oxide on the Printability, Degradability, Mechanical Strength and Bioactivity of 3D Printed Poly (Lactic Acid)-Tricalcium Phosphate Composite Scaffolds. Harb SV; Kolanthai E; Backes EH; Beatrice CAG; Pinto LA; Nunes ACC; Selistre-de-Araújo HS; Costa LC; Seal S; Pessan LA Tissue Eng Regen Med; 2024 Feb; 21(2):223-242. PubMed ID: 37856070 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Nadi A; Khodaei M; Javdani M; Mirzaei SA; Soleimannejad M; Tayebi L; Asadpour S Int J Biol Macromol; 2022 Oct; 219():1319-1336. PubMed ID: 36055598 [TBL] [Abstract][Full Text] [Related]
6. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and finite element simulation of 3D printed poly L-lactic acid scaffolds coated with alginate/carbon nanotubes for bone engineering applications. Moarrefzadeh A; Morovvati MR; Angili SN; Smaisim GF; Khandan A; Toghraie D Int J Biol Macromol; 2023 Jan; 224():1496-1508. PubMed ID: 36550791 [No Abstract] [Full Text] [Related]
9. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications. Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
11. The effect of polyethylene glycol on printability, physical and mechanical properties and osteogenic potential of 3D-printed poly (l-lactic acid)/polyethylene glycol scaffold for bone tissue engineering. Salehi S; Ghomi H; Hassanzadeh-Tabrizi SA; Koupaei N; Khodaei M Int J Biol Macromol; 2022 Nov; 221():1325-1334. PubMed ID: 36087749 [TBL] [Abstract][Full Text] [Related]
13. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
14. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Pant S; Thomas S; Loganathan S; Valapa RB Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677 [TBL] [Abstract][Full Text] [Related]
16. Nano SiO2 and MgO improve the properties of porous β-TCP scaffolds via advanced manufacturing technology. Gao C; Wei P; Feng P; Xiao T; Shuai C; Peng S Int J Mol Sci; 2015 Mar; 16(4):6818-30. PubMed ID: 25815597 [TBL] [Abstract][Full Text] [Related]
17. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. Tarafder S; Dernell WS; Bandyopadhyay A; Bose S J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization. Velioglu ZB; Pulat D; Demirbakan B; Ozcan B; Bayrak E; Erisken C Connect Tissue Res; 2019 May; 60(3):274-282. PubMed ID: 30058375 [TBL] [Abstract][Full Text] [Related]
19. Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis. Ye Q; Zhang Y; Dai K; Chen X; Read HM; Zeng L; Hang F J Mater Sci Mater Med; 2020 Aug; 31(9):77. PubMed ID: 32816067 [TBL] [Abstract][Full Text] [Related]
20. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications. Tan L; Ye Z; Zhuang W; Mao B; Li H; Li X; Wu J; Sang H Regen Ther; 2023 Dec; 24():617-629. PubMed ID: 38034857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]