BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36346381)

  • 1. Dual-porosity micromodels for studying multiphase fluid flow in carbonate rocks.
    Wolf FG; Siebert DN; Carreño MNP; Lopes AT; Zabot AM; Surmas R
    Lab Chip; 2022 Nov; 22(23):4680-4692. PubMed ID: 36346381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel fabrication of mixed wettability micromodels for pore-scale studies of fluid-rock interactions.
    AlOmier A; Cha D; Ayirala S; Al-Yousef A; Hoteit H
    Lab Chip; 2024 Feb; 24(4):882-895. PubMed ID: 38258315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real structure micromodels based on reservoir rocks for enhanced oil recovery (EOR) applications.
    Gaol CL; Wegner J; Ganzer L
    Lab Chip; 2020 Jun; 20(12):2197-2208. PubMed ID: 32426764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore-Scale Geochemical Reactivity Associated with CO
    Noiriel C; Daval D
    Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels.
    Wang W; Chang S; Gizzatov A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29380-29386. PubMed ID: 28792207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.
    Qajar J; Arns CH
    J Contam Hydrol; 2016 Sep; 192():60-86. PubMed ID: 27389612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation.
    Lee D; Ruf M; Karadimitriou N; Steeb H; Manousidaki M; Varouchakis EA; Tzortzakis S; Yiotis A
    Sci Rep; 2024 Apr; 14(1):9375. PubMed ID: 38654100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upscaling the porosity-permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning.
    Menke HP; Maes J; Geiger S
    Sci Rep; 2021 Jan; 11(1):2625. PubMed ID: 33514764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the spatial distribution of wetting in the pore networks of rocks.
    Garfi G; John CM; Rücker M; Lin Q; Spurin C; Berg S; Krevor S
    J Colloid Interface Sci; 2022 May; 613():786-795. PubMed ID: 35074705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation.
    Wu M; Xiao F; Johnson-Paben RM; Retterer ST; Yin X; Neeves KB
    Lab Chip; 2012 Jan; 12(2):253-61. PubMed ID: 22094719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.
    Qajar J; Arns CH
    J Contam Hydrol; 2017 Sep; 204():11-27. PubMed ID: 28822588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability.
    Li H; Zhang T
    Soft Matter; 2019 Sep; 15(35):6978-6987. PubMed ID: 31432880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale approach to assess total porosity and pore size in four different kinds of carbonate rocks.
    Nagata R; Dos Reis PJ; Appoloni CR
    Micron; 2023 Jan; 164():103385. PubMed ID: 36413960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Foam Microbubbles on Electrical Resistivity and Capillary Pressure of Partially Saturated Porous Media.
    R Adebayo A; Isah A; Mahmoud M; Al-Shehri D
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of base material particle features on petrophysical properties of synthetic carbonate plugs.
    Arismendi Florez JJ; Michelon M; Ulsen C; Ferrari JV
    Heliyon; 2023 Jul; 9(7):e18219. PubMed ID: 37539269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single layer porous media with entrapped minerals for microscale studies of multiphase flow.
    Liefferink RW; Naillon A; Bonn D; Prat M; Shahidzadeh N
    Lab Chip; 2018 Mar; 18(7):1094-1104. PubMed ID: 29504009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore scale image analysis for petrophysical modelling.
    Pal AK; Garia S; Ravi K; Nair AM
    Micron; 2022 Mar; 154():103195. PubMed ID: 35051800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.