BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36346604)

  • 1. Using Graph-Based Signatures to Guide Rational Antibody Engineering.
    Ascher DB; Kaminskas LM; Myung Y; Pires DEV
    Methods Mol Biol; 2023; 2552():375-397. PubMed ID: 36346604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.
    Pires DE; Ascher DB
    Nucleic Acids Res; 2016 Jul; 44(W1):W469-73. PubMed ID: 27216816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mmCSM-AB: guiding rational antibody engineering through multiple point mutations.
    Myung Y; Pires DEV; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W125-W131. PubMed ID: 32432715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mCSM-AB2: guiding rational antibody design using graph-based signatures.
    Myung Y; Rodrigues CHM; Ascher DB; Pires DEV
    Bioinformatics; 2020 Mar; 36(5):1453-1459. PubMed ID: 31665262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance.
    Pires DE; Blundell TL; Ascher DB
    Sci Rep; 2016 Jul; 6():29575. PubMed ID: 27384129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in therapeutic antibody affinity maturation: From in-vitro towards next-generation sequencing approaches.
    Tabasinezhad M; Talebkhan Y; Wenzel W; Rahimi H; Omidinia E; Mahboudi F
    Immunol Lett; 2019 Aug; 212():106-113. PubMed ID: 31247224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mCSM: predicting the effects of mutations in proteins using graph-based signatures.
    Pires DE; Ascher DB; Blundell TL
    Bioinformatics; 2014 Feb; 30(3):335-42. PubMed ID: 24281696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mCSM-membrane: predicting the effects of mutations on transmembrane proteins.
    Pires DEV; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2020 Jul; 48(W1):W147-W153. PubMed ID: 32469063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AB-Bind: Antibody binding mutational database for computational affinity predictions.
    Sirin S; Apgar JR; Bennett EM; Keating AE
    Protein Sci; 2016 Feb; 25(2):393-409. PubMed ID: 26473627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Tools for Aiding Rational Antibody Design.
    Krawczyk K; Dunbar J; Deane CM
    Methods Mol Biol; 2017; 1529():399-416. PubMed ID: 27914064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces.
    Warszawski S; Borenstein Katz A; Lipsh R; Khmelnitsky L; Ben Nissan G; Javitt G; Dym O; Unger T; Knop O; Albeck S; Diskin R; Fass D; Sharon M; Fleishman SJ
    PLoS Comput Biol; 2019 Aug; 15(8):e1007207. PubMed ID: 31442220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting antibody affinity changes upon mutations by combining multiple predictors.
    Kurumida Y; Saito Y; Kameda T
    Sci Rep; 2020 Nov; 10(1):19533. PubMed ID: 33177627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibody engineering.
    Maynard J; Georgiou G
    Annu Rev Biomed Eng; 2000; 2():339-76. PubMed ID: 11701516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody engineering.
    Dall'Acqua W; Carter P
    Curr Opin Struct Biol; 1998 Aug; 8(4):443-50. PubMed ID: 9729735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering antibody affinity by yeast surface display.
    Colby DW; Kellogg BA; Graff CP; Yeung YA; Swers JS; Wittrup KD
    Methods Enzymol; 2004; 388():348-58. PubMed ID: 15289082
    [No Abstract]   [Full Text] [Related]  

  • 16. Improving the species cross-reactivity of an antibody using computational design.
    Farady CJ; Sellers BD; Jacobson MP; Craik CS
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3744-7. PubMed ID: 19477127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Protein Supersecondary Structure Through Changes in Protein Folding, Stability, and Flexibility.
    Pires DEV; Rodrigues CHM; Albanaz ATS; Karmakar M; Myung Y; Xavier J; Michanetzi EM; Portelli S; Ascher DB
    Methods Mol Biol; 2019; 1958():173-185. PubMed ID: 30945219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comprehensive Computational Platform to Guide Drug Development Using Graph-Based Signature Methods.
    Pires DEV; Portelli S; Rezende PM; Veloso WNP; Xavier JS; Karmakar M; Myung Y; Linhares JPV; Rodrigues CHM; Silk M; Ascher DB
    Methods Mol Biol; 2020; 2112():91-106. PubMed ID: 32006280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anion solvation enhanced by positive supercharging mutations preserves thermal stability of an antibody in a wide pH range.
    Kasahara K; Kuroda D; Tanabe A; Kawade R; Nagatoishi S; Tsumoto K
    Biochem Biophys Res Commun; 2021 Jul; 563():54-59. PubMed ID: 34058475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a "Golden Standard" for computing globin stability: Stability and structure sensitivity of myoglobin mutants.
    Kepp KP
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1239-48. PubMed ID: 26054434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.