These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36346604)

  • 21. A study of the structural correlates of affinity maturation: antibody affinity as a function of chemical interactions, structural plasticity and stability.
    David MP; Asprer JJ; Ibana JS; Concepcion GP; Padlan EA
    Mol Immunol; 2007 Feb; 44(6):1342-51. PubMed ID: 16854467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies.
    Chan DTY; Groves MAT
    Emerg Top Life Sci; 2021 Nov; 5(5):601-608. PubMed ID: 33660765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. mCSM-NA: predicting the effects of mutations on protein-nucleic acids interactions.
    Pires DEV; Ascher DB
    Nucleic Acids Res; 2017 Jul; 45(W1):W241-W246. PubMed ID: 28383703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An antibody loop replacement design feasibility study and a loop-swapped dimer structure.
    Clark LA; Boriack-Sjodin PA; Day E; Eldredge J; Fitch C; Jarpe M; Miller S; Li Y; Simon K; van Vlijmen HW
    Protein Eng Des Sel; 2009 Feb; 22(2):93-101. PubMed ID: 19074157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation of antibody molecules through antibody engineering.
    Kipriyanov SM
    Methods Mol Biol; 2003; 207():3-25. PubMed ID: 12412465
    [No Abstract]   [Full Text] [Related]  

  • 26. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization.
    Li J; Kang G; Wang J; Yuan H; Wu Y; Meng S; Wang P; Zhang M; Wang Y; Feng Y; Huang H; de Marco A
    Int J Biol Macromol; 2023 Aug; 247():125733. PubMed ID: 37423452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5.
    Azoitei ML; Ban YA; Kalyuzhny O; Guenaga J; Schroeter A; Porter J; Wyatt R; Schief WR
    Proteins; 2014 Oct; 82(10):2770-82. PubMed ID: 25043744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mmCSM-PPI: predicting the effects of multiple point mutations on protein-protein interactions.
    Rodrigues CHM; Pires DEV; Ascher DB
    Nucleic Acids Res; 2021 Jul; 49(W1):W417-W424. PubMed ID: 33893812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in user-friendly computational tools to engineer protein function.
    Sequeiros-Borja CE; Surpeta B; Brezovsky J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32743637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering aggregation-resistant antibodies.
    Perchiacca JM; Tessier PM
    Annu Rev Chem Biomol Eng; 2012; 3():263-86. PubMed ID: 22468604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.
    Kiyoshi M; Caaveiro JM; Miura E; Nagatoishi S; Nakakido M; Soga S; Shirai H; Kawabata S; Tsumoto K
    PLoS One; 2014; 9(1):e87099. PubMed ID: 24475232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthetic antibodies as therapeutics.
    Fuh G
    Expert Opin Biol Ther; 2007 Jan; 7(1):73-87. PubMed ID: 17150020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region.
    Skamaki K; Emond S; Chodorge M; Andrews J; Rees DG; Cannon D; Popovic B; Buchanan A; Minter RR; Hollfelder F
    Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27307-27318. PubMed ID: 33067389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering antibodies for stability and efficient folding.
    Honegger A
    Handb Exp Pharmacol; 2008; (181):47-68. PubMed ID: 18071941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physicochemical determinants of antibody-protein interactions.
    Karadag M; Arslan M; Kaleli NE; Kalyoncu S
    Adv Protein Chem Struct Biol; 2020; 121():85-114. PubMed ID: 32312427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antigen-binding site anatomy and somatic mutations in antibodies that recognize different types of antigens.
    Raghunathan G; Smart J; Williams J; Almagro JC
    J Mol Recognit; 2012 Mar; 25(3):103-13. PubMed ID: 22407974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessing and Engineering Antibody Stability Using Experimental and Computational Methods.
    Zhang C; Dalby PA
    Methods Mol Biol; 2023; 2552():165-197. PubMed ID: 36346592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging.
    Orcutt KD; Slusarczyk AL; Cieslewicz M; Ruiz-Yi B; Bhushan KR; Frangioni JV; Wittrup KD
    Nucl Med Biol; 2011 Feb; 38(2):223-33. PubMed ID: 21315278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
    Verkhivker G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. mmCSM-NA: accurately predicting effects of single and multiple mutations on protein-nucleic acid binding affinity.
    Nguyen TB; Myung Y; de Sá AGC; Pires DEV; Ascher DB
    NAR Genom Bioinform; 2021 Dec; 3(4):lqab109. PubMed ID: 34805992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.