These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36346612)

  • 21. Conversion of Primary Alcohols and Butadiene to Branched Ketones via Merged Transfer Hydrogenative Carbonyl Addition-Redox Isomerization Catalyzed by Rhodium.
    Spinello BJ; Wu J; Cho Y; Krische MJ
    J Am Chem Soc; 2021 Sep; 143(34):13507-13512. PubMed ID: 34415159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct conversion of alcohols to α-chloro aldehydes and α-chloro ketones.
    Jing Y; Daniliuc CG; Studer A
    Org Lett; 2014 Sep; 16(18):4932-5. PubMed ID: 25197943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The direct catalytic asymmetric alpha-aminooxylation reaction: development of stereoselective routes to 1,2-diols and 1,2-amino alcohols and density functional calculations.
    Córdova A; Sundén H; Bøgevig A; Johansson M; Himo F
    Chemistry; 2004 Aug; 10(15):3673-84. PubMed ID: 15281151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lewis base-catalyzed conjugate reduction and reductive aldol reaction of alpha,beta-unsaturated ketones using trichlorosilane.
    Sugiura M; Sato N; Kotani S; Nakajima M
    Chem Commun (Camb); 2008 Sep; (36):4309-11. PubMed ID: 18802553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nickel catalyst for the addition of organoboronate esters to ketones and aldehydes.
    Bouffard J; Itami K
    Org Lett; 2009 Oct; 11(19):4410-3. PubMed ID: 19708680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly active, immobilized ruthenium catalysts for oxidation of alcohols to aldehydes and ketones. Preparation and use in both batch and flow systems.
    Kobayashi S; Miyamura H; Akiyama R; Ishida T
    J Am Chem Soc; 2005 Jun; 127(25):9251-4. PubMed ID: 15969605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-Oxidative Dehydrogenation Pathways for the Conversion of C2 -C4 Alcohols to Carbonyl Compounds.
    Shylesh S; Kim D; Ho CR; Johnson GR; Wu J; Bell AT
    ChemSusChem; 2015 Dec; 8(23):3959-62. PubMed ID: 26493770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Performance of ABNO for Oxidation of Secondary Alcohols in Acetonitrile Solution.
    Niu P; Liu X; Shen Z; Li M
    Molecules; 2018 Dec; 24(1):. PubMed ID: 30597882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cu-NHC-TEMPO catalyzed aerobic oxidation of primary alcohols to aldehydes.
    Liu X; Xia Q; Zhang Y; Chen C; Chen W
    J Org Chem; 2013 Sep; 78(17):8531-6. PubMed ID: 23944937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic addition of metallo-aldehyde enolates to ketones: a new C-C bond-forming hydrogenation.
    Koech PK; Krische MJ
    Org Lett; 2004 Mar; 6(5):691-4. PubMed ID: 14986951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Green oxidation of alcohols to carbonyl compounds by heterogeneous photocatalysis.
    Augugliaro V; Palmisano L
    ChemSusChem; 2010 Oct; 3(10):1135-8. PubMed ID: 20830724
    [No Abstract]   [Full Text] [Related]  

  • 32. Gold nanoparticles supported on Cs2CO3 as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature.
    Karimi B; Esfahani FK
    Chem Commun (Camb); 2009 Oct; (37):5555-7. PubMed ID: 19753355
    [TBL] [Abstract][Full Text] [Related]  

  • 33. New insights into the formation mechanism of Ag, Au and AgAu nanoparticles in aqueous alkaline media: alkoxides from alcohols, aldehydes and ketones as universal reducing agents.
    Gomes JF; Garcia AC; Ferreira EB; Pires C; Oliveira VL; Tremiliosi-Filho G; Gasparotto LH
    Phys Chem Chem Phys; 2015 Sep; 17(33):21683-93. PubMed ID: 26234370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bis(trimethylsilyl)chromate catalyzed oxidations of alcohols to aldehydes and ketones with periodic acid.
    Asadolah K; Heravi MM; Hekmatshoar R; Majedi S
    Molecules; 2007 May; 12(5):958-64. PubMed ID: 17873831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome P-450 model reactions: efficient and highly selective oxidation of alcohols with tetrabutylammonium peroxymonosulfate catalyzed by Mn-porphyrins.
    Rezaeifard A; Jafarpour M; Moghaddam GK; Amini F
    Bioorg Med Chem; 2007 Apr; 15(8):3097-101. PubMed ID: 17293117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition-metal- and organic-solvent-free: a highly efficient anaerobic process for selective oxidation of alcohols to aldehydes and ketones in water.
    Gogoi P; Konwar D
    Org Biomol Chem; 2005 Oct; 3(19):3473-5. PubMed ID: 16172681
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SBA-15-functionalized TEMPO confined ionic liquid: an efficient catalyst system for transition-metal-free aerobic oxidation of alcohols with improved selectivity.
    Karimi B; Badreh E
    Org Biomol Chem; 2011 Jun; 9(11):4194-8. PubMed ID: 21505706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst.
    de Souza VP; Oliveira CK; de Souza TM; Menezes PH; Alves S; Longo RL; Malvestiti I
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27854340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient controllable oxidation of alcohols to aldehydes and acids with sodium periodate catalyzed by water-soluble metalloporphyrins as biomimetic catalyst.
    Ren QG; Chen SY; Zhou XT; Ji HB
    Bioorg Med Chem; 2010 Dec; 18(23):8144-9. PubMed ID: 21051235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly efficient oxidation of secondary alcohols to ketones catalyzed by manganese complexes of N4 ligands with H2O2.
    Shen D; Miao C; Xu D; Xia C; Sun W
    Org Lett; 2015 Jan; 17(1):54-7. PubMed ID: 25513725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.