These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36346862)

  • 1. Unsupervised Synthetic Acoustic Image Generation for Audio-Visual Scene Understanding.
    Sanguineti V; Morerio P; Bue AD; Murino V
    IEEE Trans Image Process; 2022; 31():7102-7115. PubMed ID: 36346862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic positioning using multiple microphone arrays.
    Liu H; Milios E
    J Acoust Soc Am; 2005 May; 117(5):2772-82. PubMed ID: 15957748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A circular microphone array with virtual microphones based on acoustics-informed neural networks.
    Zhao S; Ma F
    J Acoust Soc Am; 2024 Jul; 156(1):405-415. PubMed ID: 39007730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MYRiAD: a multi-array room acoustic database.
    Dietzen T; Ali R; Taseska M; van Waterschoot T
    EURASIP J Audio Speech Music Process; 2023; 2023(1):17. PubMed ID: 37124321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CABE: A Cloud-Based Acoustic Beamforming Emulator for FPGA-Based Sound Source Localization.
    Segers L; Vandendriessche J; Vandervelden T; Lapauw BJ; Silva BD; Braeken A; Touhafi A
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31510098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrumental Quality Predictions and Analysis of Auditory Cues for Algorithms in Modern Headphone Technology.
    Biberger T; Schepker H; Denk F; Ewert SD
    Trends Hear; 2021; 25():23312165211001219. PubMed ID: 33739186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-Screen Sound Separation Based on Audio-visual Pre-training Using Binaural Audio.
    Yoshida M; Togo R; Ogawa T; Haseyama M
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound Localization and Speech Enhancement Algorithm Based on Dual-Microphone.
    Tao T; Zheng H; Yang J; Guo Z; Zhang Y; Ao J; Chen Y; Lin W; Tan X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Incremental Class-Learning Approach with Acoustic Novelty Detection for Acoustic Event Recognition.
    Bayram B; İnce G
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monaural sound localization based on structure-induced acoustic resonance.
    Kim K; Kim Y
    Sensors (Basel); 2015 Feb; 15(2):3872-95. PubMed ID: 25668214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency soundfield microphone for the analysis of bat biosonar.
    Lee H; Roan MJ; Ming C; Simmons JA; Wang R; Müller R
    J Acoust Soc Am; 2019 Dec; 146(6):4525. PubMed ID: 31893689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks.
    Beguš G
    Neural Netw; 2021 Jul; 139():305-325. PubMed ID: 33873122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution.
    Avni A; Ahrens J; Geier M; Spors S; Wierstorf H; Rafaely B
    J Acoust Soc Am; 2013 May; 133(5):2711-21. PubMed ID: 23654379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic space learning for sound-source separation and localization on binaural manifolds.
    Deleforge A; Forbes F; Horaud R
    Int J Neural Syst; 2015 Feb; 25(1):1440003. PubMed ID: 25164245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.
    Job JR; Myers K; Naghshineh K; Gill SA
    PLoS One; 2016; 11(7):e0159883. PubMed ID: 27467503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monaural sound-source-direction estimation using the acoustic transfer function of a parabolic reflection board.
    Takashima R; Takiguchi T; Ariki Y
    J Acoust Soc Am; 2010 Feb; 127(2):902-8. PubMed ID: 20136213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audio based surveillance forcognitive assistance using a CMT microphone within socially assistive technology.
    Rougui JE; Istrate D; Souidene W; Opitz M; Riemann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2547-50. PubMed ID: 19964978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech intelligibility in noise using throat and acoustic microphones.
    Acker-Mills BE; Houtsma AJ; Ahroon WA
    Aviat Space Environ Med; 2006 Jan; 77(1):26-31. PubMed ID: 16422450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards End-to-End Acoustic Localization Using Deep Learning: From Audio Signals to Source Position Coordinates.
    Vera-Diaz JM; Pizarro D; Macias-Guarasa J
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of microphones as near-ground sensors for seismic detection of buried landmines.
    Larson GD; Martin JS; Scott WR
    J Acoust Soc Am; 2007 Jul; 122(1):253-8. PubMed ID: 17614485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.