These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36346869)

  • 1. The Utility of Synthetic Reflexes and Haptic Feedback for Upper-Limb Prostheses in a Dexterous Task Without Direct Vision.
    Thomas N; Fazlollahi F; Kuchenbecker KJ; Brown JD
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():169-179. PubMed ID: 36346869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of vibrotactile and joint-torque feedback in a myoelectric upper-limb prosthesis.
    Thomas N; Ung G; McGarvey C; Brown JD
    J Neuroeng Rehabil; 2019 Jun; 16(1):70. PubMed ID: 31186005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic shared control improves neural efficiency during myoelectric prosthesis use.
    Thomas N; Miller AJ; Ayaz H; Brown JD
    Sci Rep; 2023 Jan; 13(1):484. PubMed ID: 36627340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees.
    Guémann M; Halgand C; Bastier A; Lansade C; Borrini L; Lapeyre É; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2022 Jun; 19(1):59. PubMed ID: 35690860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin Stretch Haptic Feedback to Convey Closure Information in Anthropomorphic, Under-Actuated Upper Limb Soft Prostheses.
    Battaglia E; Clark JP; Bianchi M; Catalano MG; Bicchi A; O'Malley MK
    IEEE Trans Haptics; 2019; 12(4):508-520. PubMed ID: 31071053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-Modality Haptic Feedback Improves Dexterous Task Execution With Virtual EMG-Controlled Gripper.
    Li K; Brown JD
    IEEE Trans Haptics; 2023; 16(4):816-825. PubMed ID: 37903035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tactile Feedback in Upper Limb Prosthetics: A Pilot Study on Trans-Radial Amputees Comparing Different Haptic Modalities.
    Barontini F; Obermeier A; Catalano MG; Fani S; Grioli G; Bianchi M; Bicchi A; Jakubowitz E
    IEEE Trans Haptics; 2023; 16(4):760-769. PubMed ID: 37801383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vibrotactile feedback and grasp interface compliance on perception and control of a sensorized myoelectric hand.
    Pena AE; Rincon-Gonzalez L; Abbas JJ; Jung R
    PLoS One; 2019; 14(1):e0210956. PubMed ID: 30650161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opinions on noninvasive sensory feedback of upper limb prosthetic users.
    Smither FC; Andrews KL; Scrabeck TL; Lennon RJ; Zhao KD
    Prosthet Orthot Int; 2022 Dec; 46(6):591-600. PubMed ID: 36515904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm.
    Raveh E; Friedman J; Portnoy S
    Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multichannel haptic feedback unlocks prosthetic hand dexterity.
    Abd MA; Ingicco J; Hutchinson DT; Tognoli E; Engeberg ED
    Sci Rep; 2022 Feb; 12(1):2323. PubMed ID: 35149695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multichannel Sensorimotor Integration with a Dexterous Artificial Hand.
    Abd MA; Engeberg ED
    Res Sq; 2023 Mar; ():. PubMed ID: 36993376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of sensory feedback in motorized upper extremity prosthesis: a review.
    Schofield JS; Evans KR; Carey JP; Hebert JS
    Expert Rev Med Devices; 2014 Sep; 11(5):499-511. PubMed ID: 24928327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor.
    Zhang T; Jiang L; Liu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychometric characterization of incidental feedback sources during grasping with a hand prosthesis.
    Wilke MA; Niethammer C; Meyer B; Farina D; Dosen S
    J Neuroeng Rehabil; 2019 Dec; 16(1):155. PubMed ID: 31823792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Getting a Grip on the Impact of Incidental Feedback From Body-Powered and Myoelectric Prostheses.
    Gonzalez MA; Lee C; Kang J; Gillespie RB; Gates DH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1905-1912. PubMed ID: 34516377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.