BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36346897)

  • 1. Ultrasensitive Fluorescence Detection and Imaging of MicroRNA in Cells Based on a Hyperbranched RCA-Assisted Multiposition SDR Signal Amplification Strategy.
    Yang Z; Guo Y; Zhou J; Liu F; Liang W; Chai Y; Li Z; Yuan R
    Anal Chem; 2022 Nov; 94(46):16237-16245. PubMed ID: 36346897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS
    Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z
    Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive Fluorescent Assay Based on a Rolling-Circle-Amplification-Assisted Multisite-Strand-Displacement-Reaction Signal-Amplification Strategy.
    Peng X; Liang WB; Wen ZB; Xiong CY; Zheng YN; Chai YQ; Yuan R
    Anal Chem; 2018 Jun; 90(12):7474-7479. PubMed ID: 29806453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs.
    Zhao Y; Wang Y; Liu S; Wang C; Liang J; Li S; Qu X; Zhang R; Yu J; Huang J
    Analyst; 2019 Aug; 144(17):5245-5253. PubMed ID: 31361292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay.
    Lee YJ; Jeong JY; Do JY; Hong CA
    Anal Bioanal Chem; 2023 Apr; 415(10):1991-1999. PubMed ID: 36853410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palindromic hyperbranched rolling circle amplification enabling ultrasensitive microRNA detection.
    Song J; Ju Y; Kim S; Kim H; Park HG
    Chem Commun (Camb); 2022 Jun; 58(45):6518-6521. PubMed ID: 35575999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs.
    Tian W; Li P; He W; Liu C; Li Z
    Biosens Bioelectron; 2019 Mar; 128():17-22. PubMed ID: 30616213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering an endonuclease-assisted rolling circle amplification synergistically catalyzing hairpin assembly mediated fluorescence platform for miR-21 detection.
    Liang Z; Huang X; Tong Y; Lin X; Chen Z
    Talanta; 2022 Sep; 247():123568. PubMed ID: 35609481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence energy transfer biosensing platform based on hyperbranched rolling circle amplification and multi-site strand displacement for ultrasensitive detection of miRNA.
    Li H; Cai Q; Wu D; Jie G; Zhou H
    Anal Chim Acta; 2022 Aug; 1222():340190. PubMed ID: 35934426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification.
    Yang L; Tao Y; Yue G; Li R; Qiu B; Guo L; Lin Z; Yang HH
    Anal Chem; 2016 May; 88(10):5097-103. PubMed ID: 27086663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart Target-Initiated Catalytic DNA Junction Circuit Amplification Strategy for the Ultrasensitive Electrochemiluminescence Detection of MicroRNA.
    Zhou YY; Li GF; Ma RX; Lin Y; Wu JW; Wu YY; Yan J; Liu SG; Tan XC; Huang KJ
    Anal Chem; 2023 Sep; 95(37):14052-14060. PubMed ID: 37672636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensing system constructed by combining a structure-switchable molecular beacon with nicking-enhanced rolling circle amplification for highly sensitive miRNA detection.
    Sun S; Wang W; Hu X; Zheng C; Xiang Q; Yang Q; Zhang J; Shen ZF; Wu ZS
    Analyst; 2022 May; 147(9):1937-1943. PubMed ID: 35389390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A label-free fluorescent enhancement nanosensor for ultrasensitive and highly selective detection of miRNA-378 through signal synergy amplification.
    Liu Z; Wang Y; Li J; Yuan Y; Wu X; Liu W; Liu Y
    Anal Chim Acta; 2019 Dec; 1087():86-92. PubMed ID: 31585570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide-based fluorometric determination of microRNA-141 using rolling circle amplification and exonuclease III-aided recycling amplification.
    Li M; Xu X; Cai Q; Luo X; Zhou Z; Xu G; Xie Y
    Mikrochim Acta; 2019 Jul; 186(8):531. PubMed ID: 31302786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination between Cancer Cells and DNA-Damaged Cells: Pre-miRNA Region Recognition Based on Hyperbranched Hybrid Chain Reaction Amplification for Simultaneous Sensitive Detection and Imaging of miRNA and Pre-miRNA.
    Zhou J; Peng X; Yang Z; Zhuo Y; Liang W; Yuan R; Chai Y
    Anal Chem; 2022 Jul; 94(27):9911-9918. PubMed ID: 35749657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J
    Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rolling circle amplification-mediated in situ synthesis of palladium nanoparticles for the ultrasensitive electrochemical detection of microRNA.
    Zhang C; Li D; Li D; Wen K; Yang X; Zhu Y
    Analyst; 2019 Jun; 144(12):3817-3825. PubMed ID: 31086898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.