BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36347088)

  • 1. Multifunctional organic nanomaterials with ultra-high photothermal conversion efficiency for photothermal therapy and inhibition of cancer metastasis.
    Yang XZ; Wen LF; Xu G; Lin HH; Wang S; Liu JY
    Bioorg Chem; 2023 Jan; 130():106220. PubMed ID: 36347088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing Intramolecular Photoinduced Electron Transfer to Enhance Photothermal Tumor Treatment of Aza-BODIPY-Based Near-Infrared Nanoparticles.
    Xu Y; Feng T; Yang T; Wei H; Yang H; Li G; Zhao M; Liu S; Huang W; Zhao Q
    ACS Appl Mater Interfaces; 2018 May; 10(19):16299-16307. PubMed ID: 29676558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment.
    Xu Y; Zhao M; Zou L; Wu L; Xie M; Yang T; Liu S; Huang W; Zhao Q
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44324-44335. PubMed ID: 30508480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BODIPY-Based Multifunctional Nanoparticles for Dual Mode Imaging-Guided Tumor Photothermal and Photodynamic Therapy.
    Chen Z; Chen Y; Xu Y; Shi X; Han Z; Bai Y; Fang H; He W; Guo Z
    ACS Appl Bio Mater; 2023 Sep; 6(9):3406-3413. PubMed ID: 36996306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tumor phototherapeutic application of nanoparticles constructed by the relationship between PTT/PDT efficiency and 2,6- and 3,5-substituted BODIPY derivatives.
    Yin J; Jiang X; Sui G; Du Y; Xing E; Shi R; Gu C; Wen X; Feng Y; Shan Z; Meng S
    J Mater Chem B; 2021 Sep; 9(36):7461-7471. PubMed ID: 34551049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled BODIPY Derivative with A-D-A Structure as Organic Nanoparticles for Photodynamic/Photothermal Cancer Therapy.
    Li G; Yang M; Sha Q; Li L; Luo X; Wu F
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment.
    Xu Y; Wang S; Chen Z; Hu R; Li S; Zhao Y; Liu L; Qu J
    J Nanobiotechnology; 2021 Feb; 19(1):37. PubMed ID: 33541369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy.
    Xi D; Xiao M; Cao J; Zhao L; Xu N; Long S; Fan J; Shao K; Sun W; Yan X; Peng X
    Adv Mater; 2020 Mar; 32(11):e1907855. PubMed ID: 32022978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics.
    Chen D; Zhong Z; Ma Q; Shao J; Huang W; Dong X
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26914-26925. PubMed ID: 32463220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attachment of -
    Li R; Ren J; Zhang D; Lv M; Wang Z; Wang H; Zhang S; Du J; Jiang XD; Wang G
    Mater Today Bio; 2022 Dec; 16():100446. PubMed ID: 36199559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy.
    Xiao W; Wang P; Ou C; Huang X; Tang Y; Wu M; Si W; Shao J; Huang W; Dong X
    Biomaterials; 2018 Nov; 183():1-9. PubMed ID: 30142531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aza-BODIPY with two efficacious fragments for NIR light-driven photothermal therapy by triggering cancer cell apoptosis.
    Shao C; Gong X; Zhang D; Jiang XD; Du J; Wang G
    J Mater Chem B; 2023 Nov; 11(44):10625-10631. PubMed ID: 37920935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Aza-BODIPY and Iron(III) Nanoparticles for Photothermal-Enhanced Chemodynamic Therapy in the NIR-II Window.
    Zhang J; Li Y; Jiang M; Qiu H; Li Y; Gu M; Yin S
    ACS Biomater Sci Eng; 2023 Feb; 9(2):821-830. PubMed ID: 36725684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy.
    Kampaengsri S; Chansaenpak K; Yong GY; Hiranmartsuwan P; Uengwanarat B; Lai RY; Meemon P; Kue CS; Kamkaew A
    ACS Appl Bio Mater; 2022 Sep; ():. PubMed ID: 36054220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aza-BODIPY-based polymeric nanoparticles for photothermal cancer therapy in a chicken egg tumor model.
    Chansaenpak K; Yong GY; Prajit A; Hiranmartsuwan P; Selvapaandian S; Ouengwanarat B; Khrootkaew T; Pinyou P; Kue CS; Kamkaew A
    Nanoscale Adv; 2024 Jan; 6(2):406-417. PubMed ID: 38235075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron Dipyrromethene-Based Phototheranostics for Near Infrared Fluorescent and Photoacoustic Imaging-Guided Synchronous Photodynamic and Photothermal Therapy of Cancer.
    Xing X; Yang K; Li B; Tan S; Yi J; Li X; Pang E; Wang B; Song X; Lan M
    J Phys Chem Lett; 2022 Sep; 13(34):7939-7946. PubMed ID: 35980815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making the Brightest Ones Dim: Maximizing the Photothermal Conversion Efficiency of BODIPY-Based Photothermal Agents.
    Kim G; Luo Y; Shin M; Bouffard J; Bae J; Kim Y
    Adv Healthc Mater; 2024 Apr; ():e2400885. PubMed ID: 38573765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic photodynamic and photothermal therapy of BODIPY-conjugated hyaluronic acid nanoparticles.
    Chen B; Cao J; Zhang K; Zhang YN; Lu J; Zubair Iqbal M; Zhang Q; Kong X
    J Biomater Sci Polym Ed; 2021 Oct; 32(15):2028-2045. PubMed ID: 34251996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy.
    Ma C; Zhang T; Xie Z
    J Mater Chem B; 2021 Sep; 9(36):7318-7327. PubMed ID: 34355720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. POSS engineering of squaraine nanoparticle with high photothermal conversion efficiency for photothermal therapy.
    Gu Z; Tian X; Guang S; Wei G; Mao Y; Xu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123576. PubMed ID: 37922849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.