BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36347432)

  • 1. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives.
    Sun R; Xiang J; Zhou Q; Piao Y; Tang J; Shao S; Zhou Z; Bae YH; Shen Y
    Adv Drug Deliv Rev; 2022 Dec; 191():114614. PubMed ID: 36347432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcytosis-enabled active extravasation of tumor nanomedicine.
    Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y
    Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery.
    Dhaliwal A; Zheng G
    Theranostics; 2019; 9(26):8091-8108. PubMed ID: 31754383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy--Problems, Solutions, and Prospects.
    Maeda H; Tsukigawa K; Fang J
    Microcirculation; 2016 Apr; 23(3):173-82. PubMed ID: 26237291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
    Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W
    Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment.
    Park J; Choi Y; Chang H; Um W; Ryu JH; Kwon IC
    Theranostics; 2019; 9(26):8073-8090. PubMed ID: 31754382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An EPR-Independent extravasation Strategy: Deformable leukocytes as vehicles for improved solid tumor therapy.
    Wu H; Li W; Hao M; Wang Y; Xue L; Ju C; Zhang C
    Adv Drug Deliv Rev; 2022 Aug; 187():114380. PubMed ID: 35662610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity.
    Maeda H
    Adv Drug Deliv Rev; 2015 Aug; 91():3-6. PubMed ID: 25579058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.
    Ojha T; Pathak V; Shi Y; Hennink WE; Moonen CTW; Storm G; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2017 Sep; 119():44-60. PubMed ID: 28697952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect.
    Liu Z; Zhang Y; Shen N; Sun J; Tang Z; Chen X
    Adv Drug Deliv Rev; 2022 Apr; 183():114138. PubMed ID: 35143895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers.
    Fang J; Islam W; Maeda H
    Adv Drug Deliv Rev; 2020; 157():142-160. PubMed ID: 32553783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor targeting via EPR: Strategies to enhance patient responses.
    Golombek SK; May JN; Theek B; Appold L; Drude N; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2018 May; 130():17-38. PubMed ID: 30009886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platinum-based combination nanomedicines for cancer therapy.
    Li Y; Lin W
    Curr Opin Chem Biol; 2023 Jun; 74():102290. PubMed ID: 36989943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.