These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36347482)

  • 1. Bioconversion of cellulose into bisabolene using Ruminococcus flavefaciens and Rhodosporidium toruloides.
    Walls LE; Otoupal P; Ledesma-Amaro R; Velasquez-Orta SB; Gladden JM; Rios-Solis L
    Bioresour Technol; 2023 Jan; 368():128216. PubMed ID: 36347482
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Yaegashi J; Kirby J; Ito M; Sun J; Dutta T; Mirsiaghi M; Sundstrom ER; Rodriguez A; Baidoo E; Tanjore D; Pray T; Sale K; Singh S; Keasling JD; Simmons BA; Singer SW; Magnuson JK; Arkin AP; Skerker JM; Gladden JM
    Biotechnol Biofuels; 2017; 10():241. PubMed ID: 29075325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass.
    Kirby J; Geiselman GM; Yaegashi J; Kim J; Zhuang X; Tran-Gyamfi MB; Prahl JP; Sundstrom ER; Gao Y; Munoz N; Burnum-Johnson KE; Benites VT; Baidoo EEK; Fuhrmann A; Seibel K; Webb-Robertson BM; Zucker J; Nicora CD; Tanjore D; Magnuson JK; Skerker JM; Gladden JM
    Biotechnol Biofuels; 2021 Apr; 14(1):101. PubMed ID: 33883010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential of Rhodosporidium toruloides for Fatty Acids Production Using Lignocellulose Biomass.
    Sunder S; Gupta A; Kataria R; Ruhal R
    Appl Biochem Biotechnol; 2024 May; 196(5):2881-2900. PubMed ID: 37615852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides.
    Zhuang X; Kilian O; Monroe E; Ito M; Tran-Gymfi MB; Liu F; Davis RW; Mirsiaghi M; Sundstrom E; Pray T; Skerker JM; George A; Gladden JM
    Microb Cell Fact; 2019 Mar; 18(1):54. PubMed ID: 30885220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Furfural degradation and its effect on Rhodosporidium toruloides-1588 during microbial growth and lipid accumulation.
    Osorio-González CS; Saini R; Hegde K; Brar SK; Avalos Ramirez A
    Bioresour Technol; 2022 Sep; 359():127496. PubMed ID: 35718247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts.
    Rodriguez A; Ersig N; Geiselman GM; Seibel K; Simmons BA; Magnuson JK; Eudes A; Gladden JM
    Bioresour Technol; 2019 Aug; 286():121365. PubMed ID: 31030073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products.
    Zhao Y; Song B; Li J; Zhang J
    World J Microbiol Biotechnol; 2021 Dec; 38(1):13. PubMed ID: 34873661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides.
    Geiselman GM; Zhuang X; Kirby J; Tran-Gyamfi MB; Prahl JP; Sundstrom ER; Gao Y; Munoz Munoz N; Nicora CD; Clay DM; Papa G; Burnum-Johnson KE; Magnuson JK; Tanjore D; Skerker JM; Gladden JM
    Microb Cell Fact; 2020 Feb; 19(1):24. PubMed ID: 32024522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007.
    Vodovnik M; Duncan SH; Reid MD; Cantlay L; Turner K; Parkhill J; Lamed R; Yeoman CJ; Miller ME; White BA; Bayer EA; Marinšek-Logar R; Flint HJ
    PLoS One; 2013; 8(6):e65333. PubMed ID: 23750253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond.
    Wen Z; Zhang S; Odoh CK; Jin M; Zhao ZK
    FEMS Yeast Res; 2020 Aug; 20(5):. PubMed ID: 32614407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source.
    Fei Q; O'Brien M; Nelson R; Chen X; Lowell A; Dowe N
    Biotechnol Biofuels; 2016; 9():130. PubMed ID: 27340432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides.
    Liu D; Geiselman GM; Coradetti S; Cheng YF; Kirby J; Prahl JP; Jacobson O; Sundstrom ER; Tanjore D; Skerker JM; Gladden J
    Biotechnol Bioeng; 2020 May; 117(5):1418-1425. PubMed ID: 31981215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Rhodosporidium toruloides for production of 3-hydroxypropionic acid from lignocellulosic hydrolysate.
    Liu D; Hwang HJ; Otoupal PB; Geiselman GM; Kim J; Pomraning KR; Kim YM; Munoz N; Nicora CD; Gao Y; Burnum-Johnson KE; Jacobson O; Coradetti S; Kim J; Deng S; Dai Z; Prahl JP; Tanjore D; Lee TS; Magnuson JK; Gladden JM
    Metab Eng; 2023 Jul; 78():72-83. PubMed ID: 37201565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a signature probe targeting the 16S-23S rRNA internal transcribed spacer of a ruminal Ruminococcus flavefaciens isolate from reindeer.
    Præsteng KE; Mackie RI; Cann IK; Mathiesen SD; Sundset MA
    Benef Microbes; 2011 Mar; 2(1):47-55. PubMed ID: 21831789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into a type III cohesin-dockerin recognition interface from the cellulose-degrading bacterium Ruminococcus flavefaciens.
    Weinstein JY; Slutzki M; Karpol A; Barak Y; Gul O; Lamed R; Bayer EA; Fried DB
    J Mol Recognit; 2015 Mar; 28(3):148-54. PubMed ID: 25639797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation.
    Brink DP; Mierke F; Norbeck J; Siewers V; Andlid T
    Microb Cell Fact; 2023 Aug; 22(1):160. PubMed ID: 37598166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo.
    Wanapat M; Cherdthong A
    Curr Microbiol; 2009 Apr; 58(4):294-9. PubMed ID: 19018588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: Bacterial flora and enzyme activity analysis.
    Baba Y; Matsuki Y; Mori Y; Suyama Y; Tada C; Fukuda Y; Saito M; Nakai Y
    J Biosci Bioeng; 2017 Apr; 123(4):489-496. PubMed ID: 28143676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.