These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36347780)

  • 1. Catalytic DNA-Assisted Mass Production of Arbitrary Single-Stranded DNA.
    Zhang Q; Xia K; Jiang M; Li Q; Chen W; Han M; Li W; Ke R; Wang F; Zhao Y; Liu Y; Fan C; Gu H
    Angew Chem Int Ed Engl; 2023 Jan; 62(5):e202212011. PubMed ID: 36347780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnological production of ssDNA with DNA-hydrolyzing deoxyribozymes.
    Liu J; Gu H
    STAR Protoc; 2021 Jun; 2(2):100531. PubMed ID: 34027488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a DNA-hydrolyzing DNAzyme for generation of PCR strands of unequal length.
    Cao D; Yu W; Xu J; Wang F; Jiang Y; Sheng Y; Sun Y; Zhang J; Jiang D
    Biochimie; 2020 Dec; 179():181-189. PubMed ID: 33022314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the function of nucleotides in the catalytic cores of the 8-17 and 10-23 DNAzymes by abasic nucleotide and C3 spacer substitutions.
    Wang B; Cao L; Chiuman W; Li Y; Xi Z
    Biochemistry; 2010 Sep; 49(35):7553-62. PubMed ID: 20698496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New DNA-hydrolyzing DNAs isolated from an ssDNA library carrying a terminal hybridization stem.
    Zhang C; Li Q; Xu T; Li W; He Y; Gu H
    Nucleic Acids Res; 2021 Jun; 49(11):6364-6374. PubMed ID: 34057476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A post-labeling approach for the characterization and quantification of RNA modifications based on site-directed cleavage by DNAzymes.
    Meusburger M; Hengesbach M; Helm M
    Methods Mol Biol; 2011; 718():259-70. PubMed ID: 21370054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes.
    Liu M; Chang D; Li Y
    Acc Chem Res; 2017 Sep; 50(9):2273-2283. PubMed ID: 28805376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage.
    Fokina AA; Meschaninova MI; Durfort T; Venyaminova AG; François JC
    Biochemistry; 2012 Mar; 51(11):2181-91. PubMed ID: 22352843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering a DNAzyme-Based Operon System for the Production of DNA Nanoscaffolds in Living Bacteria.
    Alon DM; Voigt CA; Elbaz J
    ACS Synth Biol; 2020 Feb; 9(2):236-240. PubMed ID: 31992039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes).
    Wu Y; Yu L; McMahon R; Rossi JJ; Forman SJ; Snyder DS
    Hum Gene Ther; 1999 Nov; 10(17):2847-57. PubMed ID: 10584930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing fluorogenic RNA-cleaving DNAzymes for biosensing applications.
    Ali MM; Aguirre SD; Mok WW; Li Y
    Methods Mol Biol; 2012; 848():395-418. PubMed ID: 22315083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of single-stranded DNAs by self-cleavage of rolling-circle amplification products.
    Gu H; Breaker RR
    Biotechniques; 2013 Jun; 54(6):337-43. PubMed ID: 23750543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes.
    Cheglakov Z; Weizmann Y; Basnar B; Willner I
    Org Biomol Chem; 2007 Jan; 5(2):223-5. PubMed ID: 17205162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA cleaving '10-23' DNAzymes with enhanced stability and activity.
    Schubert S; Gül DC; Grunert HP; Zeichhardt H; Erdmann VA; Kurreck J
    Nucleic Acids Res; 2003 Oct; 31(20):5982-92. PubMed ID: 14530446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro selection of RNA-cleaving DNAzymes for bacterial detection.
    Zhang W; Feng Q; Chang D; Tram K; Li Y
    Methods; 2016 Aug; 106():66-75. PubMed ID: 27017912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological mass production of DNA origami.
    Praetorius F; Kick B; Behler KL; Honemann MN; Weuster-Botz D; Dietz H
    Nature; 2017 Dec; 552(7683):84-87. PubMed ID: 29219963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and Emerging Methods for the Synthesis of Single-Stranded DNA.
    Hao M; Qiao J; Qi H
    Genes (Basel); 2020 Jan; 11(2):. PubMed ID: 31973021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid in vitro production of single-stranded DNA.
    Minev D; Guerra R; Kishi JY; Smith C; Krieg E; Said K; Hornick A; Sasaki HM; Filsinger G; Beliveau BJ; Yin P; Church GM; Shih WM
    Nucleic Acids Res; 2019 Dec; 47(22):11956-11962. PubMed ID: 31713635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA.
    Xiao Y; Wehrmann RJ; Ibrahim NA; Silverman SK
    Nucleic Acids Res; 2012 Feb; 40(4):1778-86. PubMed ID: 22021383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNAzyme footprinting: detecting protein-aptamer complexation on surfaces by blocking DNAzyme cleavage activity.
    Chen Y; Corn RM
    J Am Chem Soc; 2013 Feb; 135(6):2072-5. PubMed ID: 23351044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.