BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36347853)

  • 1. Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis.
    Chen Y; Wang Y; Chen Y; Cheng Y; Wei Y; Li Y; Wang J; Wei Y; Chan TF; Li Y
    Nat Commun; 2022 Nov; 13(1):6735. PubMed ID: 36347853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve.
    Charytonowicz D; Brody R; Sebra R
    Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
    Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes.
    Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P
    Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NNICE: a deep quantile neural network algorithm for expression deconvolution.
    Jin YW; Hu P; Liu Q
    Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DAE-TPGM: A deep autoencoder network based on a two-part-gamma model for analyzing single-cell RNA-seq data.
    Zhao S; Zhang L; Liu X
    Comput Biol Med; 2022 Jul; 146():105578. PubMed ID: 35569337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition.
    Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approximate estimation of cell-type resolution transcriptome in bulk tissue through matrix completion.
    Wang W; Zhou X; Wang J; Yao J; Wen H; Wang Y; Sun M; Zhang C; Tao W; Zou J; Ni T
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
    Tiong KL; Luzhbin D; Yeang CH
    BMC Bioinformatics; 2024 Jun; 25(1):209. PubMed ID: 38867193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear archetypal analysis of single-cell RNA-seq data by deep autoencoders.
    Wang Y; Zhao H
    PLoS Comput Biol; 2022 Apr; 18(4):e1010025. PubMed ID: 35363784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scSSA: A clustering method for single cell RNA-seq data based on semi-supervised autoencoder.
    Zhao JP; Hou TS; Su Y; Zheng CH
    Methods; 2022 Dec; 208():66-74. PubMed ID: 36377123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep matrix factorization based approach for single-cell RNA-seq data clustering.
    Liang Z; Zheng R; Chen S; Yan X; Li M
    Methods; 2022 Sep; 205():114-122. PubMed ID: 35777719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
    Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X
    Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput single-cell RNA-seq data imputation and characterization with surrogate-assisted automated deep learning.
    Li X; Li S; Huang L; Zhang S; Wong KC
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell RNA-seq denoising using a deep count autoencoder.
    Eraslan G; Simon LM; Mircea M; Mueller NS; Theis FJ
    Nat Commun; 2019 Jan; 10(1):390. PubMed ID: 30674886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially informed cell-type deconvolution for spatial transcriptomics.
    Ma Y; Zhou X
    Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bulk brain tissue cell-type deconvolution with bias correction for single-nuclei RNA sequencing data using DeTREM.
    O'Neill NK; Stein TD; Hu J; Rehman H; Campbell JD; Yajima M; Zhang X; Farrer LA
    BMC Bioinformatics; 2023 Sep; 24(1):349. PubMed ID: 37726653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.