These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36347865)

  • 1. Inverse design of core-shell particles with discrete material classes using neural networks.
    Kuhn L; Repän T; Rockstuhl C
    Sci Rep; 2022 Nov; 12(1):19019. PubMed ID: 36347865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance prediction and inverse design of multi-core selective couplers based on neural networks.
    Fan J; Huang W; Zhang R; Gu Z; Song B; Chen S
    Appl Opt; 2022 Nov; 61(32):9350-9359. PubMed ID: 36606881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A differentiable approach to the maximum independent set problem using dataless neural networks.
    Alkhouri IR; Atia GK; Velasquez A
    Neural Netw; 2022 Nov; 155():168-176. PubMed ID: 36057182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient-based training and pruning of radial basis function networks with an application in materials physics.
    Määttä J; Bazaliy V; Kimari J; Djurabekova F; Nordlund K; Roos T
    Neural Netw; 2021 Jan; 133():123-131. PubMed ID: 33212359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learn to Predict Sets Using Feed-Forward Neural Networks.
    Rezatofighi H; Zhu T; Kaskman R; Motlagh FT; Shi JQ; Milan A; Cremers D; Leal-Taixe L; Reid I
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):9011-9025. PubMed ID: 34705634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing machine learning techniques for predicting glassy dynamics.
    Alkemade RM; Boattini E; Filion L; Smallenburg F
    J Chem Phys; 2022 May; 156(20):204503. PubMed ID: 35649836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core-Shell Plasmonic Metastructures.
    Vahidzadeh E; Shankar K
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-Shot Learning in Spiking Neural Networks by Multi-Timescale Optimization.
    Jiang R; Zhang J; Yan R; Tang H
    Neural Comput; 2021 Aug; 33(9):2439-2472. PubMed ID: 34280263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning-Assisted Design of Material Properties.
    Kadulkar S; Sherman ZM; Ganesan V; Truskett TM
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():235-254. PubMed ID: 35300515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactability.
    Lou H; Chung JI; Kiang YH; Xiao LY; Hageman MJ
    Int J Pharm; 2019 Jan; 555():368-379. PubMed ID: 30468845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensemble Learning Based on Policy Optimization Neural Networks for Capability Assessment.
    Zhang F; Li J; Wang Y; Guo L; Wu D; Wu H; Zhao H
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning.
    Pan C; Mahmoudabadbozchelou M; Duan X; Benneyan JC; Jamali S; Erb RM
    J Colloid Interface Sci; 2022 Apr; 611():29-38. PubMed ID: 34929436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Multitask Conditional Neural-Network Surrogate Models for Expensive Optimization.
    Luo J; Chen L; Li X; Zhang Q
    IEEE Trans Cybern; 2022 May; 52(5):3984-3997. PubMed ID: 32881702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.
    Ferjaoui R; Cherni MA; Boujnah S; Kraiem NEH; Kraiem T
    Comput Methods Programs Biomed; 2021 Sep; 209():106320. PubMed ID: 34390938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Knowledge-Based Deep Learning Architecture for Aspect-Based Sentiment Analysis.
    Alexandridis G; Aliprantis J; Michalakis K; Korovesis K; Tsantilas P; Caridakis G
    Int J Neural Syst; 2021 Oct; 31(10):2150046. PubMed ID: 34435942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A calculation method for optical properties of yolk shell based on deep learning.
    He W; Ma X; Zhang J; Xu K; Gao J; Lei S; Zhan C
    PLoS One; 2024; 19(5):e0302262. PubMed ID: 38696523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MGLNN: Semi-supervised learning via Multiple Graph Cooperative Learning Neural Networks.
    Jiang B; Chen S; Wang B; Luo B
    Neural Netw; 2022 Sep; 153():204-214. PubMed ID: 35750007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine learning as a surrogate model for agent-based simulations.
    Angione C; Silverman E; Yaneske E
    PLoS One; 2022; 17(2):e0263150. PubMed ID: 35143521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.