These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 36348041)
1. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China. Li W; Xu Q; Yi J; Liu J Sci Rep; 2022 Nov; 12(1):19029. PubMed ID: 36348041 [TBL] [Abstract][Full Text] [Related]
2. [Seasonal variation and driving factors of forest fire in Zhejiang Province, China, based on MODIS satellite hot spots]. Zeng AC; Cai QJ; Su ZW; Guo XB; Jin QF; Guo FT Ying Yong Sheng Tai Xue Bao; 2020 Feb; 31(2):399-406. PubMed ID: 32476331 [TBL] [Abstract][Full Text] [Related]
3. [Applicability of mixed effect model in the prediction of forest fire]. Zhang Z; Yang S; Zhu H; Wang GY; Guo FT; Sun SC Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1547-1554. PubMed ID: 35729132 [TBL] [Abstract][Full Text] [Related]
4. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China]. Li S; Wu ZW; Liang Y; He HS Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):210-218. PubMed ID: 29749205 [TBL] [Abstract][Full Text] [Related]
5. Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Guo F; Su Z; Wang G; Sun L; Tigabu M; Yang X; Hu H Sci Total Environ; 2017 Dec; 605-606():411-425. PubMed ID: 28672230 [TBL] [Abstract][Full Text] [Related]
6. Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato. Farfán M; Dominguez C; Espinoza A; Jaramillo A; Alcántara C; Maldonado V; Tovar I; Flamenco A Environ Monit Assess; 2021 Oct; 193(10):684. PubMed ID: 34599681 [TBL] [Abstract][Full Text] [Related]
7. [Prediction model of human-caused fire occurrence in the boreal forest of northern China]. Guo FT; Su ZW; Wang GY; Wang Q; Sun L; Yang TT Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2099-106. PubMed ID: 26710638 [TBL] [Abstract][Full Text] [Related]
8. Integrating meteorological and geospatial data for forest fire risk assessment. Parvar Z; Saeidi S; Mirkarimi S J Environ Manage; 2024 May; 358():120925. PubMed ID: 38640755 [TBL] [Abstract][Full Text] [Related]
9. [A review of models of forest fire occurrence prediction in China]. Gao C; Lin HL; Hu HQ; Song H Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3227-3240. PubMed ID: 33345524 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal dynamics of forest fires in the context of climate change: a review. Zhang Y; Lim HS; Hu C; Zhang R Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38662294 [TBL] [Abstract][Full Text] [Related]
11. Factors Affecting the Behavior of Large Forest Fires in Turkey. Daşdemir İ; Aydın F; Ertuğrul M Environ Manage; 2021 Jan; 67(1):162-175. PubMed ID: 33200252 [TBL] [Abstract][Full Text] [Related]
12. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. Lecina-Diaz J; Alvarez A; Retana J PLoS One; 2014; 9(1):e85127. PubMed ID: 24465492 [TBL] [Abstract][Full Text] [Related]
13. Prediction of regional wildfire activity in the probabilistic Bayesian framework of Firelihood. Pimont F; Fargeon H; Opitz T; Ruffault J; Barbero R; Martin-StPaul N; Rigolot E; RiviÉre M; Dupuy JL Ecol Appl; 2021 Jul; 31(5):e02316. PubMed ID: 33636026 [TBL] [Abstract][Full Text] [Related]
14. [Forest fire risk assessment for China under different climate scenarios.]. Tian XR; Dai X; Wang MY; Zhao FJ; Shu LF Ying Yong Sheng Tai Xue Bao; 2016 Mar; 27(3):769-776. PubMed ID: 29726181 [TBL] [Abstract][Full Text] [Related]
15. A European-scale analysis reveals the complex roles of anthropogenic and climatic factors in driving the initiation of large wildfires. Ochoa C; Bar-Massada A; Chuvieco E Sci Total Environ; 2024 Mar; 917():170443. PubMed ID: 38296061 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. Rodrigues M; Jiménez-Ruano A; Peña-Angulo D; de la Riva J J Environ Manage; 2018 Nov; 225():177-192. PubMed ID: 30081279 [TBL] [Abstract][Full Text] [Related]
17. Managing fires in a changing world: Fuel and weather determine fire behavior and safety in the neotropical savannas. Santos ACD; Montenegro SDR; Ferreira MC; Barradas ACS; Schmidt IB J Environ Manage; 2021 Jul; 289():112508. PubMed ID: 33831763 [TBL] [Abstract][Full Text] [Related]
18. Investigation of fire regime dynamics and modeling of burn area over India for the twenty-first century. Bar S; Acharya P; Parida BR; Sannigrahi S; Maiti A; Barik G; Kumar N Environ Sci Pollut Res Int; 2024 Sep; 31(41):53839-53855. PubMed ID: 38502265 [TBL] [Abstract][Full Text] [Related]
19. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview. Zhang JH; Yao FM; Liu C; Yang LM; Boken VK Int J Environ Res Public Health; 2011 Aug; 8(8):3156-78. PubMed ID: 21909297 [TBL] [Abstract][Full Text] [Related]
20. Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). Tien Bui D; Hoang ND; Samui P J Environ Manage; 2019 May; 237():476-487. PubMed ID: 30825780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]