BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36349026)

  • 1. Multiband-switchability and high-absorptivity of a metamaterial perfect absorber based on a plasmonic resonant structure in the near-infrared region.
    Liang J; Chen Y; Zhou Z; Chen S
    RSC Adv; 2022 Oct; 12(48):30871-30878. PubMed ID: 36349026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-band tunable perfect metamaterial absorber based on graphene.
    Wang F; Huang S; Li L; Chen W; Xie Z
    Appl Opt; 2018 Aug; 57(24):6916-6922. PubMed ID: 30129577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable dual-band metamaterial absorber in the infrared range based on split-ring-groove array.
    Liu J; Liu B; Tang S; Song J; Jiang Y
    Appl Opt; 2022 Jan; 61(2):471-477. PubMed ID: 35200884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor.
    Wu D; Liu Y; Li R; Chen L; Ma R; Liu C; Ye H
    Nanoscale Res Lett; 2016 Dec; 11(1):483. PubMed ID: 27807825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tunable Triple-Band Near-Infrared Metamaterial Absorber Based on Au Nano-Cuboids Array.
    Qin F; Chen Z; Chen X; Yi Z; Yao W; Duan T; Wu P; Yang H; Li G; Yi Y
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31991689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra Narrow Dual-Band Perfect Absorber Based on a Dielectric-Dielectric-Metal Three-Layer Film Material.
    Liu B; Wu P; Zhu H; Lv L
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple Structure for an Independently Tunable Infrared Absorber Based on a Non-Concentric Graphene Nanodisk.
    Yu K; Shen P; Zhang W; Xiong X; Zhang J; Liu Y
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically Switchable Polarization-Independent Triple-Band Perfect Metamaterial Absorber Using a Phase-Change Material in the Mid-Infrared (MIR) Region.
    Xu D; Cui F; Zheng G
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34064884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures, principles, and properties of metamaterial perfect absorbers.
    Zhao C; Wang H; Bu Y; Zou H; Wang X
    Phys Chem Chem Phys; 2023 Nov; 25(44):30145-30171. PubMed ID: 37916298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Narrow-Band Multi-Resonant Metamaterial in Near-IR.
    Ali F; Aksu S
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33202666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-band terahertz metamaterial absorber based on Dirac semimetal for a refractive index sensing application.
    Jiang J; Xu W; Wu Y; Duan G; Xu C; Zhao Q; Zhu H; Zhang X; Wang BX
    Appl Opt; 2023 Jun; 62(17):4706-4715. PubMed ID: 37707169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
    Liu X; Lan C; Li B; Zhao Q; Zhou J
    Sci Rep; 2016 Jul; 6():28906. PubMed ID: 27406699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tunable wide-angle narrowband perfect absorber based on an optical cavity containing hyperbolic metamaterials.
    Xie Z; Zhu X; Deng Y; Chen Y
    Phys Chem Chem Phys; 2023 Nov; 25(42):29358-29364. PubMed ID: 37877334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple-Band Surface Plasmon Resonance Metamaterial Absorber Based on Open-Ended Prohibited Sign Type Monolayer Graphene.
    Lai R; Shi P; Yi Z; Li H; Yi Y
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial.
    Hajian H; Ghobadi A; Butun B; Ozbay E
    Opt Express; 2018 Jun; 26(13):16940-16954. PubMed ID: 30119512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.
    Zhang C; Huang C; Pu M; Song J; Zhao Z; Wu X; Luo X
    Sci Rep; 2017 Jul; 7(1):5652. PubMed ID: 28720892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials.
    Ren Y; Zhou T; Jiang C; Tang B
    Opt Express; 2021 Mar; 29(5):7666-7679. PubMed ID: 33726263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniaturized and Actively Tunable Triple-Band Terahertz Metamaterial Absorber Using an Analogy I-Typed Resonator.
    Wang BX; Xu C; Duan G; Jiang J; Xu W; Yang Z; Wu Y
    Nanoscale Res Lett; 2022 Mar; 17(1):35. PubMed ID: 35291018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.