These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36349026)

  • 21. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of the microwave five-band a perfect metamaterial absorber for the 5G communication‏.
    Mohammed SA; Kamil Albadri RA; Al-Badri KSL
    Heliyon; 2023 Sep; 9(9):e19466. PubMed ID: 37681182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-narrowband near-infrared tunable two-dimensional perfect absorber for refractive index sensing.
    Huang X; Wang T; Yan R; Jiang X; Yue X; Wang L
    Appl Opt; 2021 May; 60(14):4113-4119. PubMed ID: 33983163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial.
    Bai Y; Zhao L; Ju D; Jiang Y; Liu L
    Opt Express; 2015 Apr; 23(7):8670-80. PubMed ID: 25968705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triple-Band Anisotropic Perfect Absorbers Based on α-Phase MoO
    Tang B; Yang N; Song X; Jin G; Su J
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.
    Nguyen DM; Lee D; Rho J
    Sci Rep; 2017 Jun; 7(1):2611. PubMed ID: 28572672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Ultrathin, Triple-Band Metamaterial Absorber with Wide-Incident-Angle Stability for Conformal Applications at X and Ku Frequency Band.
    Deng G; Lv K; Sun H; Yang J; Yin Z; Li Y; Chi B; Li X
    Nanoscale Res Lett; 2020 Nov; 15(1):217. PubMed ID: 33210185
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-narrow multi-band polarization-insensitive plasmonic perfect absorber for sensing.
    Shi L; Shang J; Liu Z; Li Y; Fu G; Liu X; Pan P; Luo H; Liu G
    Nanotechnology; 2020 Nov; 31(46):465501. PubMed ID: 32764189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Performance enhancement due to a top dielectric coating on a metamaterial perfect absorber.
    Pradhan JK; Gopal Achanta V; Agarwal AK; Anantha Ramakrishna S
    Appl Opt; 2020 Jun; 59(17):E118-E125. PubMed ID: 32543522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies.
    Xu J; Zhao Z; Yu H; Yang L; Gou P; Cao J; Zou Y; Qian J; Shi T; Ren Q; An Z
    Opt Express; 2016 Oct; 24(22):25742-25751. PubMed ID: 27828509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-resonant absorptions in asymmetric step-shaped plasmonic metamaterials for versatile sensing application scenarios.
    Yu L; Liang Y; Gao H; Kuang K; Wang Q; Peng W
    Opt Express; 2022 Jan; 30(2):2006-2017. PubMed ID: 35209350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.
    Qin Z; Shi X; Yang F; Hou E; Meng D; Sun C; Dai R; Zhang S; Liu H; Xu H; Liang Z
    Opt Express; 2022 Jan; 30(1):473-483. PubMed ID: 35201223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-Narrowband Anisotropic Perfect Absorber Based on α-MoO
    Jin G; Zhou T; Tang B
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-band tunable perfect metamaterial absorber in the THz range.
    Yao G; Ling F; Yue J; Luo C; Ji J; Yao J
    Opt Express; 2016 Jan; 24(2):1518-27. PubMed ID: 26832531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-band and polarization-independent metamaterial terahertz narrowband absorber.
    Pan W; Shen T; Ma Y; Zhang Z; Yang H; Wang X; Zhang X; Li Y; Yang L
    Appl Opt; 2021 Mar; 60(8):2235-2241. PubMed ID: 33690320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Fabrication of a Triple-Band Terahertz Metamaterial Absorber.
    Wang J; Lang T; Hong Z; Xiao M; Yu J
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.