These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36349145)

  • 1. Predicting the Number of Reported Pulmonary Tuberculosis in Guiyang, China, Based on Time Series Analysis Techniques.
    Yang SX; Xu HF; Mao YJ; Liang ZH; Pan CL
    Comput Math Methods Med; 2022; 2022():7828131. PubMed ID: 36349145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China.
    Chen YP; Liu LF; Che Y; Huang J; Li GX; Sang GX; Xuan ZQ; He TF
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China.
    Li ZQ; Pan HQ; Liu Q; Song H; Wang JM
    Infect Dis Poverty; 2020 Nov; 9(1):151. PubMed ID: 33148337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid model for tuberculosis forecasting based on empirical mode decomposition in China.
    Zhao R; Liu J; Zhao Z; Zhai M; Ren H; Wang X; Li Y; Cui Y; Qiao Y; Ren J; Chen L; Qiu L
    BMC Infect Dis; 2023 Oct; 23(1):665. PubMed ID: 37805543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meteorological factors contribute to the risk of pulmonary tuberculosis: A multicenter study in eastern China.
    Li Z; Liu Q; Zhan M; Tao B; Wang J; Lu W
    Sci Total Environ; 2021 Nov; 793():148621. PubMed ID: 34328976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China.
    Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R
    PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting pulmonary tuberculosis incidence in China using Baidu search index: an ARIMAX model approach.
    Yang J; Zhou J; Luo T; Xie Y; Wei Y; Mai H; Yang Y; Cui P; Ye L; Liang H; Huang J
    Environ Health Prev Med; 2023; 28():68. PubMed ID: 37926526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China.
    Wu Z; Chen Z; Long S; Wu A; Wang H
    BMC Infect Dis; 2022 Jul; 22(1):641. PubMed ID: 35871653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of air pollution on the transmission of pulmonary tuberculosis.
    Ding ZQ; Li YX; Wang XM; Li HL; Cai YL; Wang BX; Wang K; Wang WM
    Math Biosci Eng; 2020 Jun; 17(4):4317-4327. PubMed ID: 32987581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association between Meteorological Factors and Mumps and Models for Prediction in Chongqing, China.
    Zhang H; Su K; Zhong X
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of meteorological factors on tuberculosis incidence in Southwest China from 2006 to 2015.
    Xiao Y; He L; Chen Y; Wang Q; Meng Q; Chang W; Xiong L; Yu Z
    Sci Rep; 2018 Jul; 8(1):10053. PubMed ID: 29968800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system.
    Zuo Z; Wang M; Cui H; Wang Y; Wu J; Qi J; Pan K; Sui D; Liu P; Xu A
    BMC Public Health; 2020 Aug; 20(1):1284. PubMed ID: 32843011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects and Interaction of Meteorological Factors on Pulmonary Tuberculosis in Urumqi, China, 2013-2019.
    Nie Y; Lu Y; Wang C; Yang Z; Sun Y; Zhang Y; Tian M; Rifhat R; Zhang L
    Front Public Health; 2022; 10():951578. PubMed ID: 35910866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China.
    Yang E; Zhang H; Guo X; Zang Z; Liu Z; Liu Y
    BMC Infect Dis; 2022 May; 22(1):490. PubMed ID: 35606725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan.
    Wangdi K; Singhasivanon P; Silawan T; Lawpoolsri S; White NJ; Kaewkungwal J
    Malar J; 2010 Sep; 9():251. PubMed ID: 20813066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning models for hepatitis E incidence prediction leveraging meteorological factors.
    Feng Y; Cui X; Lv J; Yan B; Meng X; Zhang L; Guo Y
    PLoS One; 2023; 18(3):e0282928. PubMed ID: 36913401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the tuberculosis incidence using a SARIMAX-NNARX hybrid model by integrating meteorological factors in Qinghai Province, China.
    Liang W; Hu A; Hu P; Zhu J; Wang Y
    Int J Biometeorol; 2023 Jan; 67(1):55-65. PubMed ID: 36271168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid seasonal prediction model for tuberculosis incidence in China.
    Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z
    BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of meteorological factors and human brucellosis in Hebei province, China.
    Cao LT; Liu HH; Li J; Yin XD; Duan Y; Wang J
    Sci Total Environ; 2020 Feb; 703():135491. PubMed ID: 31740063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.