These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36349227)

  • 1. Fabrication of microtiter plate on paper using 96-well plates for wax stamping.
    Borah M; Maheswari D; Dutta HS
    Microfluid Nanofluidics; 2022; 26(12):99. PubMed ID: 36349227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Wax Printing: Fabrication of Paper-Based Microfluidic Devices Using a Thermal Transfer Printer.
    Ruiz RA; Gonzalez JL; Vazquez-Alvarado M; Martinez NW; Martinez AW
    Anal Chem; 2022 Jun; 94(25):8833-8837. PubMed ID: 35694851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing.
    de Araujo TA; de Moraes NC; Petroni JM; Ferreira VS; Lucca BG
    Mikrochim Acta; 2021 Nov; 188(12):437. PubMed ID: 34837526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing.
    Dungchai W; Chailapakul O; Henry CS
    Analyst; 2011 Jan; 136(1):77-82. PubMed ID: 20871884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding wax screen-printing: a novel patterning process for microfluidic cloth-based analytical devices.
    Liu M; Zhang C; Liu F
    Anal Chim Acta; 2015 Sep; 891():234-46. PubMed ID: 26388382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-induced selective wax reflow for paper-based microfluidics.
    Zhang Y; Liu J; Wang H; Fan Y
    RSC Adv; 2019 Apr; 9(20):11460-11464. PubMed ID: 35520212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper.
    Juang YJ; Hsu SK
    Polymers (Basel); 2022 Feb; 14(3):. PubMed ID: 35160629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Alignment of Multiple Fabrication Steps for Rapid Prototyping of Microfluidic Paper-Based Analytical Devices.
    Rahbar M; Nesterenko PN; Paull B; Macka M
    Anal Chem; 2017 Nov; 89(22):11918-11923. PubMed ID: 29090570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique.
    Nilghaz A; Wicaksono DH; Gustiono D; Abdul Majid FA; Supriyanto E; Abdul Kadir MR
    Lab Chip; 2012 Jan; 12(1):209-18. PubMed ID: 22089026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and inexpensive process to fabricate paper based microfluidic devices using a cut and heat plastic lamination process.
    Kumawat N; Soman SS; Vijayavenkataraman S; Kumar S
    Lab Chip; 2022 Sep; 22(18):3377-3389. PubMed ID: 35801817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding wax printing: a simple micropatterning process for paper-based microfluidics.
    Carrilho E; Martinez AW; Whitesides GM
    Anal Chem; 2009 Aug; 81(16):7091-5. PubMed ID: 20337388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds.
    Juang YJ; Wang Y; Hsu SK
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-fabrication by wax spraying for rapid smartphone-based quantification of bio-markers.
    Motalebizadeh A; Asiaei S
    Anal Biochem; 2020 Aug; 603():113777. PubMed ID: 32445635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament.
    Espinosa A; Diaz J; Vazquez E; Acosta L; Santiago A; Cunci L
    Talanta Open; 2022 Dec; 6():. PubMed ID: 36093430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of paper devices via laser-heating-wax-printing for high-tech enzyme-linked immunosorbent assays with low-tech pen-type pH meter readout.
    Le S; Zhou H; Nie J; Cao C; Yang J; Pan H; Li J; Zhang Y
    Analyst; 2017 Jan; 142(3):511-516. PubMed ID: 28106171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Microfluidic Paper-Based Analytical Devices for Sub-Microliter Sample Analysis.
    Tenda K; Ota R; Yamada K; Henares TG; Suzuki K; Citterio D
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digitally Controlled Printing of Bioink Barriers for Paper-Based Analytical Devices: An Environmentally Friendly One-Step Approach.
    Romanholo PVV; de Andrade LM; Silva-Neto HA; Coltro WKT; Sgobbi LF
    Anal Chem; 2024 Apr; 96(14):5349-5356. PubMed ID: 38554084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally actuated wax valves for paper-fluidic diagnostics.
    Phillips EA; Shen R; Zhao S; Linnes JC
    Lab Chip; 2016 Oct; 16(21):4230-4236. PubMed ID: 27722697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.