These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36349227)

  • 21. A review on wax printed microfluidic paper-based devices for international health.
    Altundemir S; Uguz AK; Ulgen K
    Biomicrofluidics; 2017 Jul; 11(4):041501. PubMed ID: 28936274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay.
    Preechakasedkit P; Siangproh W; Khongchareonporn N; Ngamrojanavanich N; Chailapakul O
    Biosens Bioelectron; 2018 Apr; 102():27-32. PubMed ID: 29107857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and flexible strategy to produce electrochemical paper-based analytical devices using a craft cutter printer to create wax barrier and screen-printed electrodes.
    de Oliveira TR; Fonseca WT; de Oliveira Setti G; Faria RC
    Talanta; 2019 Apr; 195():480-489. PubMed ID: 30625573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrophobic surface patterning with soft, wax-infused micro-stamps.
    Torabi S; Cai Z; Pham JT; Trinkle CA
    J Colloid Interface Sci; 2022 Jun; 615():494-500. PubMed ID: 35150957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing.
    Lu Y; Shi W; Qin J; Lin B
    Anal Chem; 2010 Jan; 82(1):329-35. PubMed ID: 20000582
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Easy and rapid pen-on-paper protocol for fabrication of paper analytical devices using inexpensive acrylate-based plastic welding repair kit.
    Aguilar LG; Petroni JM; Ferreira VS; Lucca BG
    Talanta; 2020 Nov; 219():121246. PubMed ID: 32887137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting Dimensions in Microfluidic Paper Based Analytical Devices.
    Catalan-Carrio R; Akyazi T; Basabe-Desmonts L; Benito-Lopez F
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of paper-based analytical devices using a PLA 3D-printed stencil for electrochemical determination of chloroquine and escitalopram.
    Silva MKL; Sousa GS; Simoes RP; Cesarino I
    J Solid State Electrochem; 2022; 26(2):581-586. PubMed ID: 34751209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing.
    Zhang Y; Zhou C; Nie J; Le S; Qin Q; Liu F; Li Y; Li J
    Anal Chem; 2014 Feb; 86(4):2005-12. PubMed ID: 24444190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel screen-printed microfluidic paper-based electrochemical device for detection of glucose and uric acid in urine.
    Yao Y; Zhang C
    Biomed Microdevices; 2016 Oct; 18(5):92. PubMed ID: 27628060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs).
    Strong EB; Schultz SA; Martinez AW; Martinez NW
    Sci Rep; 2019 Jan; 9(1):7. PubMed ID: 30626903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Printing silicone-based hydrophobic barriers on paper for microfluidic assays using low-cost ink jet printers.
    Rajendra V; Sicard C; Brennan JD; Brook MA
    Analyst; 2014 Dec; 139(24):6361-5. PubMed ID: 25353713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper.
    Oyola-Reynoso S; Heim AP; Halbertsma-Black J; Zhao C; Tevis ID; Çınar S; Cademartiri R; Liu X; Bloch JF; Thuo MM
    Talanta; 2015 Nov; 144():289-93. PubMed ID: 26452824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape.
    Cheng CM; Mazzeo AD; Gong J; Martinez AW; Phillips ST; Jain N; Whitesides GM
    Lab Chip; 2010 Dec; 10(23):3201-5. PubMed ID: 20949218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellulose acetate microwell plates for high-throughput colorimetric assays.
    Gomez-Dopazo GB; Agosto Nieves RJ; Albarracín Rivera RL; Colon Morera SM; Nazario DR; Ramos I; Dmochowski IJ; Lee D; Bansal V
    RSC Adv; 2024 May; 14(22):15319-15327. PubMed ID: 38741966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications.
    Ghosh R; Gopalakrishnan S; Savitha R; Renganathan T; Pushpavanam S
    Sci Rep; 2019 May; 9(1):7896. PubMed ID: 31133720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-step polymer screen-printing for microfluidic paper-based analytical device (μPAD) fabrication.
    Sameenoi Y; Nongkai PN; Nouanthavong S; Henry CS; Nacapricha D
    Analyst; 2014 Dec; 139(24):6580-8. PubMed ID: 25360590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The air-gap PAD: a roll-to-roll-compatible fabrication method for paper microfluidics.
    Roller RM; Rea A; Lieberman M
    Lab Chip; 2023 Mar; 23(7):1918-1925. PubMed ID: 36883463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-cost fabrication of paper-based microfluidic devices by one-step plotting.
    Nie J; Zhang Y; Lin L; Zhou C; Li S; Zhang L; Li J
    Anal Chem; 2012 Aug; 84(15):6331-5. PubMed ID: 22881397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alternative Patterning Methods for Paper-based Analytical Devices Using Nail Polish as a Hydrophobic Reagent.
    Satarpai T; Siripinyanond A
    Anal Sci; 2018; 34(5):605-612. PubMed ID: 29743434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.