These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 36349383)
1. Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions. Huang Z; Wang C; Li Y; Zhang H; Zeng A; He X Pest Manag Sci; 2023 Mar; 79(3):1140-1153. PubMed ID: 36349383 [TBL] [Abstract][Full Text] [Related]
2. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters. Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971 [TBL] [Abstract][Full Text] [Related]
3. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system. Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339 [TBL] [Abstract][Full Text] [Related]
4. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
5. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: effects on droplet deposition distribution. Yu S; Cui L; Cui H; Liu X; Liu J; Xin Z; Yuan J; Wang D Pest Manag Sci; 2024 Jul; 80(7):3334-3348. PubMed ID: 38380840 [TBL] [Abstract][Full Text] [Related]
6. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
7. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
8. Characteristics of unmanned aerial spraying systems and related spray drift: A review. Chen P; Douzals JP; Lan Y; Cotteux E; Delpuech X; Pouxviel G; Zhan Y Front Plant Sci; 2022; 13():870956. PubMed ID: 36003827 [TBL] [Abstract][Full Text] [Related]
9. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
10. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study. Perkins DB; Abi-Akar F; Goodwin G; Brain RA Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378 [TBL] [Abstract][Full Text] [Related]
11. Particle drift simulation from mesotrione and rimsulfuron plus thifensulfuron-methyl mixture through two nozzle types to field and vegetable crops. Brankov M; Alves GS; Vieira BC; Zaric M; Vukoja B; Houston T; Kruger GR Environ Sci Pollut Res Int; 2023 Mar; 30(13):38226-38238. PubMed ID: 36580245 [TBL] [Abstract][Full Text] [Related]
12. Herbicide spray drift from ground and aerial applications: Implications for potential pollinator foraging sources. Butts TR; Fritz BK; Kouame KB; Norsworthy JK; Barber LT; Ross WJ; Lorenz GM; Thrash BC; Bateman NR; Adamczyk JJ Sci Rep; 2022 Oct; 12(1):18017. PubMed ID: 36289439 [TBL] [Abstract][Full Text] [Related]
13. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
14. Development and assessment of a novel servo-controlled spraying system for real time adjustment of the orientation angle of the nozzles of a boom sprayer. Bayat A; İtmeç M; Özlüoymak ÖB Pest Manag Sci; 2023 Nov; 79(11):4439-4450. PubMed ID: 37405577 [TBL] [Abstract][Full Text] [Related]
15. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model. Stainier C; Destain MF; Schiffers B; Lebeau F Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793 [TBL] [Abstract][Full Text] [Related]
16. Direct and indirect drift assessment means. Part 4: a comparative study. Nuyttens D; Baetens K; De Schampheleire M; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827 [TBL] [Abstract][Full Text] [Related]
17. Spraying performance of umbrella wind-field-type atomization and its application to parameter optimization. Li S; Li J; Zhang R; Yu S; Wang P; Liu H; Yang X Pest Manag Sci; 2024 Feb; 80(2):473-497. PubMed ID: 37794582 [TBL] [Abstract][Full Text] [Related]
18. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the research progress on the deposition and drift of spray droplets by plant protection UAVs. Weicai Q; Panyang C Sci Rep; 2023 Sep; 13(1):14935. PubMed ID: 37696849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]