BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36349509)

  • 1. Phenolic glycolipid-1 of Mycobacterium leprae is involved in human Schwann cell line ST8814 neurotoxic phenotype.
    Girardi KDCV; Mietto BS; Dos Anjos Lima K; Atella GC; da Silva DS; Pereira AMR; Rosa PS; Lara FA
    J Neurochem; 2023 Jan; 164(2):158-171. PubMed ID: 36349509
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Chavarro-Portillo B; Soto CY; Guerrero MI
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PGL I expression in live bacteria allows activation of a CD206/PPARγ cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves.
    Díaz Acosta CC; Dias AA; Rosa TLSA; Batista-Silva LR; Rosa PS; Toledo-Pinto TG; Costa FDMR; Lara FA; Rodrigues LS; Mattos KA; Sarno EN; Bozza PT; Guilhot C; de Berrêdo-Pinho M; Pessolani MCV
    PLoS Pathog; 2018 Jul; 14(7):e1007151. PubMed ID: 29979790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes.
    Tabouret G; Astarie-Dequeker C; Demangel C; Malaga W; Constant P; Ray A; Honoré N; Bello NF; Perez E; Daffé M; Guilhot C
    PLoS Pathog; 2010 Oct; 6(10):e1001159. PubMed ID: 20975946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Macrophage Response to Mycobacterium leprae Phenolic Glycolipid Initiates Nerve Damage in Leprosy.
    Madigan CA; Cambier CJ; Kelly-Scumpia KM; Scumpia PO; Cheng TY; Zailaa J; Bloom BR; Moody DB; Smale ST; Sagasti A; Modlin RL; Ramakrishnan L
    Cell; 2017 Aug; 170(5):973-985.e10. PubMed ID: 28841420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular localization of Mycobacterium leprae-specific phenolic glycolipid (PGL-I) antigen in human leprosy lesions and in M. leprae isolated from armadillo liver.
    Boddingius J; Dijkman H
    J Gen Microbiol; 1990 Oct; 136(10):2001-12. PubMed ID: 2269873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression profile of Rab5, Rab7, tryptophan aspartate-containing coat protein, leprae lipoarabinomannan, and phenolic glycolipid-1 on the failure of the phagolysosome process in macrophages of leprosy patients as a viability marker of Mycobacterium leprae.
    Prakoeswa CR; Wahyuni R; Iswahyudi ; Adriaty D; Yusuf I; Sutjipto ; Agusni I; Izumi S
    Int J Mycobacteriol; 2016 Jun; 5(2):155-63. PubMed ID: 27242226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for natural antibody in the pathogenesis of leprosy: antibody in nonimmune serum mediates C3 fixation to the Mycobacterium leprae surface and hence phagocytosis by human mononuclear phagocytes.
    Schlesinger LS; Horwitz MA
    Infect Immun; 1994 Jan; 62(1):280-9. PubMed ID: 8262640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leprosy lipid provides the key to Schwann cell entry.
    Young DB
    Trends Microbiol; 2001 Feb; 9(2):52-4. PubMed ID: 11173227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody response to phenolic glycolipid I and Mycobacterium w antigens and its relation to bacterial load in M. leprae-infected mice and leprosy patients.
    Moudgil KD; Gupta SK; Naraynan PR; Srivastava LM; Mishra RS; Talwar GP
    Clin Exp Immunol; 1989 Nov; 78(2):214-8. PubMed ID: 12412751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy.
    Spencer JS; Brennan PJ
    Lepr Rev; 2011 Dec; 82(4):344-57. PubMed ID: 22439275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of zoonotic leprosy in Pará, Brazilian Amazon, and risks associated with human contact or consumption of armadillos.
    da Silva MB; Portela JM; Li W; Jackson M; Gonzalez-Juarrero M; Hidalgo AS; Belisle JT; Bouth RC; Gobbo AR; Barreto JG; Minervino AHH; Cole ST; Avanzi C; Busso P; Frade MAC; Geluk A; Salgado CG; Spencer JS
    PLoS Negl Trop Dis; 2018 Jun; 12(6):e0006532. PubMed ID: 29953440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and functional characterizations of Schwann cells stimulated with Mycobacterium leprae.
    Silva TP; Silva AC; Baruque Mda G; Oliveira RB; Machado MP; Sarno EN
    Mem Inst Oswaldo Cruz; 2008 Jun; 103(4):363-9. PubMed ID: 18660991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleukin-4 regulates the expression of CD209 and subsequent uptake of Mycobacterium leprae by Schwann cells in human leprosy.
    Teles RM; Krutzik SR; Ochoa MT; Oliveira RB; Sarno EN; Modlin RL
    Infect Immun; 2010 Nov; 78(11):4634-43. PubMed ID: 20713631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subversion of Schwann Cell Glucose Metabolism by Mycobacterium leprae.
    Medeiros RC; Girardi KD; Cardoso FK; Mietto BS; Pinto TG; Gomez LS; Rodrigues LS; Gandini M; Amaral JJ; Antunes SL; Corte-Real S; Rosa PS; Pessolani MC; Nery JA; Sarno EN; Batista-Silva LR; Sola-Penna M; Oliveira MF; Moraes MO; Lara FA
    J Biol Chem; 2016 Oct; 291(41):21375-21387. PubMed ID: 27555322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the cytokine response in human monocytes by mycobacterium leprae phenolic glycolipid-1.
    Manca C; Peixoto B; Malaga W; Guilhot C; Kaplan G
    J Interferon Cytokine Res; 2012 Jan; 32(1):27-33. PubMed ID: 21981546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium leprae induces Schwann cell proliferation and migration in a denervated milieu following intracutaneous excision axotomy in nine-banded armadillos.
    Ebenezer GJ; Pena MT; Daniel AS; Truman RW; Adams L; Duthie MS; Wagner K; Zampino S; Tolf E; Tsottles D; Polydefkis M
    Exp Neurol; 2022 Jun; 352():114053. PubMed ID: 35341747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene expression profiling specifies chemokine, mitochondrial and lipid metabolism signatures in leprosy.
    Guerreiro LT; Robottom-Ferreira AB; Ribeiro-Alves M; Toledo-Pinto TG; Rosa Brito T; Rosa PS; Sandoval FG; Jardim MR; Antunes SG; Shannon EJ; Sarno EN; Pessolani MC; Williams DL; Moraes MO
    PLoS One; 2013; 8(6):e64748. PubMed ID: 23798993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and characterization of peptide mimotopes of phenolic glycolipid-I of Mycobacterium leprae.
    Youn JH; Myung HJ; Liav A; Chatterjee D; Brennan PJ; Choi IH; Cho SN; Shin JS
    FEMS Immunol Med Microbiol; 2004 May; 41(1):51-7. PubMed ID: 15094167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a specific peptide against phenolic glycolipid-1 from Mycobacterium leprae and its implications in leprosy bacilli entry.
    Arenas NE; Pieffet G; Rocha-Roa C; Guerrero MI
    Mem Inst Oswaldo Cruz; 2022; 117():e220025. PubMed ID: 35857971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.