These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36349749)

  • 1. Sensitivity of viscoelastic characterization in multi-harmonic atomic force microscopy.
    Chandrashekar A; Givois A; Belardinelli P; Penning CL; Aragón AM; Staufer U; Alijani F
    Soft Matter; 2022 Nov; 18(46):8748-8755. PubMed ID: 36349749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.
    Rajabifar B; Bajaj A; Reifenberger R; Proksch R; Raman A
    Nanoscale; 2021 Oct; 13(41):17428-17441. PubMed ID: 34647552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Viscoelastic Properties and Interfaces in High-Density Polyethylene Vitrimers at the Nanoscale Using Dynamic Mode Atomic Force Microscopy.
    Yang L; Nickmilder P; Verhoogt H; Hoeks T; Leclère P
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38501-38510. PubMed ID: 38993000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional cantilevers for simultaneous enhancement of contact resonance and harmonic atomic force microscopy.
    Wang W; Zhang K; Zhang W; Hou Y; Chen Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33784663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy.
    Piacenti AR; Adam C; Hawkins N; Wagner R; Seifert J; Taniguchi Y; Proksch R; Contera S
    Macromolecules; 2024 Feb; 57(3):1118-1127. PubMed ID: 38370912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges.
    López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2020; 11():1409-1418. PubMed ID: 33014681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM.
    Benaglia S; Amo CA; Garcia R
    Nanoscale; 2019 Aug; 11(32):15289-15297. PubMed ID: 31386741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Relative Humidity on the Viscoelasticity of Thin Organic Films Studied by Contact Thermal Noise AFM.
    Gonzalez-Martinez JF; Kakar E; Erkselius S; Rehnberg N; Sotres J
    Langmuir; 2019 May; 35(18):6015-6023. PubMed ID: 30965008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model.
    Solares SD
    Beilstein J Nanotechnol; 2014; 5():1649-63. PubMed ID: 25383277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy.
    Raman A; Trigueros S; Cartagena A; Stevenson AP; Susilo M; Nauman E; Contera SA
    Nat Nanotechnol; 2011 Nov; 6(12):809-14. PubMed ID: 22081213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale effects in the characterization of viscoelastic materials with atomic force microscopy: coupling of a quasi-three-dimensional standard linear solid model with in-plane surface interactions.
    Solares SD
    Beilstein J Nanotechnol; 2016; 7():554-71. PubMed ID: 27335746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy.
    Parvini CH; Saadi MASR; Solares SD
    Beilstein J Nanotechnol; 2020; 11():922-937. PubMed ID: 32596096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters.
    Li M; Liu L; Xu X; Xing X; Dang D; Xi N; Wang Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():193-201. PubMed ID: 29609140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The head and neck cancer (HN-5) cell line properties extraction by AFM.
    Korayem MH; Heidary K; Rastegar Z
    J Biol Eng; 2020; 14():10. PubMed ID: 32206087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques.
    Uluutku B; López-Guerra EA; Solares SD
    Beilstein J Nanotechnol; 2021; 12():1063-1077. PubMed ID: 34631339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy.
    Huda Shaik N; G Reifenberger R; Raman A
    Nanotechnology; 2020 Nov; 31(45):455502. PubMed ID: 32413884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.