These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36349999)

  • 1. Towards personalized antibody cancer therapy: development of a microfluidic cell culture device for antibody selection.
    Condelipes PGM; Fontes PM; Godinho-Santos A; Brás EJS; Marques V; Afonso MB; Rodrigues CMP; Chu V; Gonçalves J; Conde JP
    Lab Chip; 2022 Nov; 22(23):4717-4728. PubMed ID: 36349999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel in vitro microfluidic platform for osteocyte mechanotransduction studies.
    Xu L; Song X; Carroll G; You L
    Integr Biol (Camb); 2020 Dec; 12(12):303-310. PubMed ID: 33420790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Retinal Differentiation of Human Induced Pluripotent Stem Cells in a Continuously Perfused Microfluidic Culture Device.
    Abdolvand N; Tostoes R; Raimes W; Kumar V; Szita N; Veraitch F
    Biotechnol J; 2019 Mar; 14(3):e1800323. PubMed ID: 30155990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic device for expedited tumor growth towards drug evaluation.
    Uhl CG; Liu Y
    Lab Chip; 2019 Apr; 19(8):1458-1470. PubMed ID: 30888358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled pharmacokinetic anti-cancer drug concentration profiles lead to growth inhibition of colorectal cancer cells in a microfluidic device.
    Komen J; Westerbeek EY; Kolkman RW; Roesthuis J; Lievens C; van den Berg A; van der Meer AD
    Lab Chip; 2020 Aug; 20(17):3167-3178. PubMed ID: 32729598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport.
    Wevers NR; Kasi DG; Gray T; Wilschut KJ; Smith B; van Vught R; Shimizu F; Sano Y; Kanda T; Marsh G; Trietsch SJ; Vulto P; Lanz HL; Obermeier B
    Fluids Barriers CNS; 2018 Aug; 15(1):23. PubMed ID: 30165870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures.
    Dornhof J; Kieninger J; Muralidharan H; Maurer J; Urban GA; Weltin A
    Lab Chip; 2022 Jan; 22(2):225-239. PubMed ID: 34851349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel and effective approach to generate germline-like monoclonal antibodies by integration of phage and mammalian cell display platforms.
    Jin YJ; Yu D; Tian XL; Li HX; Zhou XC; Kong Y; Zhang W; Zhang L; Lei C; Yang ZL; Tu C; Wu YL; Ying TL
    Acta Pharmacol Sin; 2022 Apr; 43(4):954-962. PubMed ID: 34234269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Biosensor-Based Devices for Rapid Diagnosis and Effective Anti-cancer Therapeutic Monitoring for Breast Cancer Metastasis.
    Sukanya VS; Rath SN
    Adv Exp Med Biol; 2022; 1379():319-339. PubMed ID: 35760998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorectal Adenocarcinoma Cell Culture in a Microfluidically Controlled Environment with a Static Molecular Gradient of Polyphenol.
    Szafran RG; Gąsiorowski K; Wiatrak B
    Molecules; 2021 May; 26(11):. PubMed ID: 34072020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advance in phage display technology for bioanalysis.
    Tan Y; Tian T; Liu W; Zhu Z; J Yang C
    Biotechnol J; 2016 Jun; 11(6):732-45. PubMed ID: 27061133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ/body-on-a-chip based on microfluidic technology for drug discovery.
    Kimura H; Sakai Y; Fujii T
    Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications.
    Bhagat S; Singh S
    Prog Mol Biol Transl Sci; 2022; 187(1):205-240. PubMed ID: 35094775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.
    Fatemi F; Amini SM; Kharrazi S; Rasaee MJ; Mazlomi MA; Asadi-Ghalehni M; Rajabibazl M; Sadroddiny E
    Colloids Surf B Biointerfaces; 2017 Nov; 159():770-780. PubMed ID: 28886513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic perfusion culture.
    Hattori K; Sugiura S; Kanamori T
    Methods Mol Biol; 2014; 1104():251-63. PubMed ID: 24297421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.