These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36350363)

  • 1. Confinement-Tunable Transition Dipole Moment Orientation in Perovskite Nanoplatelet Solids and Binary Blends.
    Marcato T; Krumeich F; Shih CJ
    ACS Nano; 2022 Nov; 16(11):18459-18471. PubMed ID: 36350363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark and Bright Excitons in Halide Perovskite Nanoplatelets.
    Gramlich M; Swift MW; Lampe C; Lyons JL; Döblinger M; Efros AL; Sercel PC; Urban AS
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103013. PubMed ID: 34939751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets.
    Gramlich M; Lampe C; Drewniok J; Urban AS
    J Phys Chem Lett; 2021 Nov; 12(46):11371-11377. PubMed ID: 34791883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes.
    Otero-Martínez C; Ye J; Sung J; Pastoriza-Santos I; Pérez-Juste J; Xia Z; Rao A; Hoye RLZ; Polavarapu L
    Adv Mater; 2022 Mar; 34(10):e2107105. PubMed ID: 34775643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.
    Tong Y; Ehrat F; Vanderlinden W; Cardenas-Daw C; Stolarczyk JK; Polavarapu L; Urban AS
    ACS Nano; 2016 Dec; 10(12):10936-10944. PubMed ID: 28024369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressing Strong Exciton-Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems.
    Peng S; Wei Q; Wang B; Zhang Z; Yang H; Pang G; Wang K; Xing G; Sun XW; Tang Z
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22156-22162. PubMed ID: 32803819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes.
    Kumar S; Marcato T; Krumeich F; Li YT; Chiu YC; Shih CJ
    Nat Commun; 2022 Apr; 13(1):2106. PubMed ID: 35440650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets.
    Ghribi A; Ben Aich R; Boujdaria K; Barisien T; Legrand L; Chamarro M; Testelin C
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating the Transition Dipole Moment of CsPbBr
    Jurow MJ; Morgenstern T; Eisler C; Kang J; Penzo E; Do M; Engelmayer M; Osowiecki WT; Bekenstein Y; Tassone C; Wang LW; Alivisatos AP; Brütting W; Liu Y
    Nano Lett; 2019 Apr; 19(4):2489-2496. PubMed ID: 30848600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blade-coated perovskite nanoplatelet polymer composites for sky-blue light-emitting diodes.
    Chen J; Li J; Nedelcu G; Hansch P; Di Mario L; Protesescu L; Loi MA
    J Mater Chem C Mater; 2024 Sep; 12(35):13847-13853. PubMed ID: 39144138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor.
    Erdem O; Gungor K; Guzelturk B; Tanriover I; Sak M; Olutas M; Dede D; Kelestemur Y; Demir HV
    Nano Lett; 2019 Jul; 19(7):4297-4305. PubMed ID: 31185570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.
    Weidman MC; Seitz M; Stranks SD; Tisdale WA
    ACS Nano; 2016 Aug; 10(8):7830-9. PubMed ID: 27471862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment.
    Gao Y; Weidman MC; Tisdale WA
    Nano Lett; 2017 Jun; 17(6):3837-3843. PubMed ID: 28534407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets.
    Li Q; Lian T
    Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of Nanoplatelet Light-Emitting Diodes.
    Xiao P; Huang J; Yan D; Luo D; Yuan J; Liu B; Liang D
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stacking in colloidal nanoplatelets: tuning excitonic properties.
    Guzelturk B; Erdem O; Olutas M; Kelestemur Y; Demir HV
    ACS Nano; 2014 Dec; 8(12):12524-33. PubMed ID: 25469555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media.
    Erdem O; Foroutan S; Gheshlaghi N; Guzelturk B; Altintas Y; Demir HV
    Nano Lett; 2020 Sep; 20(9):6459-6465. PubMed ID: 32787166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets.
    Singldinger A; Gramlich M; Gruber C; Lampe C; Urban AS
    ACS Energy Lett; 2020 May; 5(5):1380-1385. PubMed ID: 32421025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes.
    Hoye RLZ; Lai ML; Anaya M; Tong Y; Gałkowski K; Doherty T; Li W; Huq TN; Mackowski S; Polavarapu L; Feldmann J; MacManus-Driscoll JL; Friend RH; Urban AS; Stranks SD
    ACS Energy Lett; 2019 May; 4(5):1181-1188. PubMed ID: 31119197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printing and
    Bai P; Hu A; Liu Y; Jin Y; Gao Y
    J Phys Chem Lett; 2020 Jun; 11(11):4524-4529. PubMed ID: 32432888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.