These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Suppressing Strong Exciton-Phonon Coupling in Blue Perovskite Nanoplatelet Solids by Binary Systems. Peng S; Wei Q; Wang B; Zhang Z; Yang H; Pang G; Wang K; Xing G; Sun XW; Tang Z Angew Chem Int Ed Engl; 2020 Dec; 59(49):22156-22162. PubMed ID: 32803819 [TBL] [Abstract][Full Text] [Related]
8. Dielectric Confinement and Exciton Fine Structure in Lead Halide Perovskite Nanoplatelets. Ghribi A; Ben Aich R; Boujdaria K; Barisien T; Legrand L; Chamarro M; Testelin C Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835818 [TBL] [Abstract][Full Text] [Related]
9. Manipulating the Transition Dipole Moment of CsPbBr Jurow MJ; Morgenstern T; Eisler C; Kang J; Penzo E; Do M; Engelmayer M; Osowiecki WT; Bekenstein Y; Tassone C; Wang LW; Alivisatos AP; Brütting W; Liu Y Nano Lett; 2019 Apr; 19(4):2489-2496. PubMed ID: 30848600 [TBL] [Abstract][Full Text] [Related]
10. Blade-coated perovskite nanoplatelet polymer composites for sky-blue light-emitting diodes. Chen J; Li J; Nedelcu G; Hansch P; Di Mario L; Protesescu L; Loi MA J Mater Chem C Mater; 2024 Sep; 12(35):13847-13853. PubMed ID: 39144138 [TBL] [Abstract][Full Text] [Related]
11. Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor. Erdem O; Gungor K; Guzelturk B; Tanriover I; Sak M; Olutas M; Dede D; Kelestemur Y; Demir HV Nano Lett; 2019 Jul; 19(7):4297-4305. PubMed ID: 31185570 [TBL] [Abstract][Full Text] [Related]
12. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. Weidman MC; Seitz M; Stranks SD; Tisdale WA ACS Nano; 2016 Aug; 10(8):7830-9. PubMed ID: 27471862 [TBL] [Abstract][Full Text] [Related]
13. CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Gao Y; Weidman MC; Tisdale WA Nano Lett; 2017 Jun; 17(6):3837-3843. PubMed ID: 28534407 [TBL] [Abstract][Full Text] [Related]
14. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Li Q; Lian T Acc Chem Res; 2019 Sep; 52(9):2684-2693. PubMed ID: 31433164 [TBL] [Abstract][Full Text] [Related]
15. Emergence of Nanoplatelet Light-Emitting Diodes. Xiao P; Huang J; Yan D; Luo D; Yuan J; Liu B; Liang D Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096754 [TBL] [Abstract][Full Text] [Related]
16. Stacking in colloidal nanoplatelets: tuning excitonic properties. Guzelturk B; Erdem O; Olutas M; Kelestemur Y; Demir HV ACS Nano; 2014 Dec; 8(12):12524-33. PubMed ID: 25469555 [TBL] [Abstract][Full Text] [Related]
18. Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets. Singldinger A; Gramlich M; Gruber C; Lampe C; Urban AS ACS Energy Lett; 2020 May; 5(5):1380-1385. PubMed ID: 32421025 [TBL] [Abstract][Full Text] [Related]
19. Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes. Hoye RLZ; Lai ML; Anaya M; Tong Y; Gałkowski K; Doherty T; Li W; Huq TN; Mackowski S; Polavarapu L; Feldmann J; MacManus-Driscoll JL; Friend RH; Urban AS; Stranks SD ACS Energy Lett; 2019 May; 4(5):1181-1188. PubMed ID: 31119197 [TBL] [Abstract][Full Text] [Related]
20. Printing and Bai P; Hu A; Liu Y; Jin Y; Gao Y J Phys Chem Lett; 2020 Jun; 11(11):4524-4529. PubMed ID: 32432888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]