These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36350451)
1. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Azhar W; Khan AR; Salam A; Ulhassan Z; Qi J; Shah G; Liu Y; Chunyan Y; Yang S; Gan Y Environ Sci Pollut Res Int; 2023 Feb; 30(10):26137-26149. PubMed ID: 36350451 [TBL] [Abstract][Full Text] [Related]
2. Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Khan AR; Azhar W; Wu J; Ulhassan Z; Salam A; Zaidi SHR; Yang S; Song G; Gan Y Ecotoxicol Environ Saf; 2021 Dec; 226():112844. PubMed ID: 34619479 [TBL] [Abstract][Full Text] [Related]
3. Melatonin-mediated resistance to copper oxide nanoparticles-induced toxicity by regulating the photosynthetic apparatus, cellular damages and antioxidant defense system in maize seedlings. Raza Khan A; Fan X; Salam A; Azhar W; Ulhassan Z; Qi J; Liaquat F; Yang S; Gan Y Environ Pollut; 2023 Jan; 316(Pt 2):120639. PubMed ID: 36372367 [TBL] [Abstract][Full Text] [Related]
5. Copper oxide nanoparticles mitigate cadmium toxicity in rice seedlings through multiple physiological mechanisms. Jia X; He J; Yan T; Lu D; Xu H; Li K; Ren Y Environ Sci Pollut Res Int; 2024 Aug; 31(36):49026-49039. PubMed ID: 39042189 [TBL] [Abstract][Full Text] [Related]
6. Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Yang Z; Xiao Y; Jiao T; Zhang Y; Chen J; Gao Y Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32075321 [TBL] [Abstract][Full Text] [Related]
7. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by copper oxide nanoparticles. Peng C; Zhang H; Fang H; Xu C; Huang H; Wang Y; Sun L; Yuan X; Chen Y; Shi J Environ Toxicol Chem; 2015 Sep; 34(9):1996-2003. PubMed ID: 25868010 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response. Huang G; Zuverza-Mena N; White JC; Hu H; Xing B; Dhankher OP Sci Total Environ; 2022 Sep; 839():156285. PubMed ID: 35636547 [TBL] [Abstract][Full Text] [Related]
9. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Shaw AK; Hossain Z Chemosphere; 2013 Oct; 93(6):906-15. PubMed ID: 23791109 [TBL] [Abstract][Full Text] [Related]
11. OsFTIP7 determines metallic oxide nanoparticles response and tolerance by regulating auxin biosynthesis in rice. Jiang M; Wang J; Rui M; Yang L; Shen J; Chu H; Song S; Chen Y J Hazard Mater; 2021 Feb; 403():123946. PubMed ID: 33264991 [TBL] [Abstract][Full Text] [Related]
12. Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings. Tiwari PK; Shweta ; Singh AK; Singh VP; Prasad SM; Ramawat N; Tripathi DK; Chauhan DK; Rai AK Ecotoxicol Environ Saf; 2019 Jul; 176():321-329. PubMed ID: 30951979 [TBL] [Abstract][Full Text] [Related]
13. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice]. Wang SL; Zhang YX; Liu HZ; Xin H Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694 [TBL] [Abstract][Full Text] [Related]
14. Biologically synthesized CuO nanoparticles induce physiological, metabolic, and molecular changes in the hazel cell cultures. Hazrati R; Zare N; Asghari R; Sheikhzadeh P; Johari-Ahar M Appl Microbiol Biotechnol; 2022 Sep; 106(18):6017-6031. PubMed ID: 35972514 [TBL] [Abstract][Full Text] [Related]
15. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Wang X; Sun W; Ma X Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135 [TBL] [Abstract][Full Text] [Related]
16. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L. Wang W; Liu J; Ren Y; Zhang L; Xue Y; Zhang L; He J Bull Environ Contam Toxicol; 2020 Jun; 104(6):770-777. PubMed ID: 32328666 [TBL] [Abstract][Full Text] [Related]
17. Impact of CuO nanoparticles on maize: Comparison with CuO bulk particles with special reference to oxidative stress damages and antioxidant defense status. Roy D; Adhikari S; Adhikari A; Ghosh S; Azahar I; Basuli D; Hossain Z Chemosphere; 2022 Jan; 287(Pt 1):131911. PubMed ID: 34461334 [TBL] [Abstract][Full Text] [Related]
18. Magnesium oxide nanoparticles alleviate arsenic toxicity, reduce oxidative stress and arsenic accumulation in rice (Oryza sativa L.). Koley R; Mishra D; Mondal NK Environ Sci Pollut Res Int; 2023 Nov; 30(55):117932-117951. PubMed ID: 37872343 [TBL] [Abstract][Full Text] [Related]
19. Effects and Mechanisms of Copper Oxide Nanoparticles with Regard to Arsenic Availability in Soil-Rice Systems: Adsorption Behavior and Microbial Response. Wu Q; Jiang X; Wu H; Zou L; Wang L; Shi J Environ Sci Technol; 2022 Jun; 56(12):8142-8154. PubMed ID: 35654440 [TBL] [Abstract][Full Text] [Related]
20. Co-application of copper oxide nanoparticles and Trichoderma harzianum with physiological, enzymatic and ultrastructural responses for the mitigation of salt stress. Shah IH; Sabir IA; Rehman A; Hameed MK; Albashar G; Manzoor MA; Shakoor A Chemosphere; 2023 Sep; 336():139230. PubMed ID: 37343643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]