BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 36350469)

  • 1. Modeling Human Gonad Development in Organoids.
    Pryzhkova MV; Boers R; Jordan PW
    Tissue Eng Regen Med; 2022 Dec; 19(6):1185-1206. PubMed ID: 36350469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The endothelium, a key actor in organ development and hPSC-derived organoid vascularization.
    Vargas-Valderrama A; Messina A; Mitjavila-Garcia MT; Guenou H
    J Biomed Sci; 2020 May; 27(1):67. PubMed ID: 32443983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-organising human gonads generated by a Matrigel-based gradient system.
    Oliver E; Alves-Lopes JP; Harteveld F; Mitchell RT; Åkesson E; Söder O; Stukenborg JB
    BMC Biol; 2021 Sep; 19(1):212. PubMed ID: 34556114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel xeno-organoid approach: exploring the crosstalk between human iPSC-derived PGC-like and rat testicular cells.
    Mall EM; Rotte N; Yoon J; Sandhowe-Klaverkamp R; Röpke A; Wistuba J; Hübner K; Schöler HR; Schlatt S
    Mol Hum Reprod; 2020 Dec; 26(12):879-893. PubMed ID: 33049038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kidney Organoids: A Translational Journey.
    Morizane R; Bonventre JV
    Trends Mol Med; 2017 Mar; 23(3):246-263. PubMed ID: 28188103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic 3D Combinatorial Generation of hPSC-Derived Neuromesodermal Organoids With Diverse Regional and Cellular Identities.
    Whye D; Wood D; Kim KH; Chen C; Makhortova N; Sahin M; Buttermore ED
    Curr Protoc; 2022 Oct; 2(10):e568. PubMed ID: 36264199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An In Vitro Differentiation Protocol for Human Embryonic Bipotential Gonad and Testis Cell Development.
    Knarston IM; Pachernegg S; Robevska G; Ghobrial I; Er PX; Georges E; Takasato M; Combes AN; Jørgensen A; Little MH; Sinclair AH; Ayers KL
    Stem Cell Reports; 2020 Dec; 15(6):1377-1391. PubMed ID: 33217324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids.
    Fowler JL; Ang LT; Loh KM
    Wiley Interdiscip Rev Dev Biol; 2020 May; 9(3):e368. PubMed ID: 31746148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testicular organoids: a new model to study the testicular microenvironment in vitro?
    Alves-Lopes JP; Stukenborg JB
    Hum Reprod Update; 2018 Mar; 24(2):176-191. PubMed ID: 29281008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolved oxygen concentration regulates human hepatic organoid formation from pluripotent stem cells in a fully controlled bioreactor.
    Farzaneh Z; Abbasalizadeh S; Asghari-Vostikolaee MH; Alikhani M; Cabral JMS; Baharvand H
    Biotechnol Bioeng; 2020 Dec; 117(12):3739-3756. PubMed ID: 32725885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling.
    Tian L; Gao J; Garcia IM; Chen HJ; Castaldi A; Chen YW
    Wiley Interdiscip Rev Dev Biol; 2021 Nov; 10(6):e399. PubMed ID: 33145915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration.
    Shin MK; Bang JS; Lee JE; Tran HD; Park G; Lee DR; Jo J
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human chemically-derived hepatic progenitors (hCdHs) as a source of liver organoid generation: Application in regenerative medicine, disease modeling, and toxicology testing.
    Salas-Silva S; Kim Y; Kim TH; Kim M; Seo D; Choi J; Factor VM; Seo HR; Song Y; Choi GS; Jung YK; Kim K; Lee KG; Jeong J; Shin JH; Choi D
    Biomaterials; 2023 Dec; 303():122360. PubMed ID: 38465578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disease Modeling in Stem Cell-Derived 3D Organoid Systems.
    Dutta D; Heo I; Clevers H
    Trends Mol Med; 2017 May; 23(5):393-410. PubMed ID: 28341301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue.
    Singh RK; Winkler P; Binette F; Glickman RD; Seiler M; Petersen-Jones SM; Nasonkin IO
    J Tissue Eng Regen Med; 2020 Feb; 14(2):388-394. PubMed ID: 31908157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of Human Testicular Niche Cells for Pluripotent Stem Cell and Testis Development Research.
    Pryzhkova MV; Jordan PW
    Tissue Eng Regen Med; 2020 Apr; 17(2):223-235. PubMed ID: 32114677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling mouse and human development using organoid cultures.
    Huch M; Koo BK
    Development; 2015 Sep; 142(18):3113-25. PubMed ID: 26395140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust Pipeline for the Multi-Stage Accelerated Differentiation of Functional 3D Cortical Organoids from Human Pluripotent Stem Cells.
    Whye D; Wood D; Saber WA; Norabuena EM; Makhortova NR; Sahin M; Buttermore ED
    Curr Protoc; 2023 Jan; 3(1):e641. PubMed ID: 36633423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating Kidney Organoids from Human Pluripotent Stem Cells Using Defined Conditions.
    Howden SE; Little MH
    Methods Mol Biol; 2020; 2155():183-192. PubMed ID: 32474877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated and Improved Differentiation of Retinal Organoids from Pluripotent Stem Cells in Rotating-Wall Vessel Bioreactors.
    DiStefano T; Chen HY; Panebianco C; Kaya KD; Brooks MJ; Gieser L; Morgan NY; Pohida T; Swaroop A
    Stem Cell Reports; 2018 Jan; 10(1):300-313. PubMed ID: 29233554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.