These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
500 related articles for article (PubMed ID: 36350513)
1. Structure and Function of TET Enzymes. Yin X; Hu L; Xu Y Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513 [TBL] [Abstract][Full Text] [Related]
2. Structure and Function of TET Enzymes. Yin X; Xu Y Adv Exp Med Biol; 2016; 945():275-302. PubMed ID: 27826843 [TBL] [Abstract][Full Text] [Related]
3. Structural insight into substrate preference for TET-mediated oxidation. Hu L; Lu J; Cheng J; Rao Q; Li Z; Hou H; Lou Z; Zhang L; Li W; Gong W; Liu M; Sun C; Yin X; Li J; Tan X; Wang P; Wang Y; Fang D; Cui Q; Yang P; He C; Jiang H; Luo C; Xu Y Nature; 2015 Nov; 527(7576):118-22. PubMed ID: 26524525 [TBL] [Abstract][Full Text] [Related]
4. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109 [TBL] [Abstract][Full Text] [Related]
6. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Ito S; Shen L; Dai Q; Wu SC; Collins LB; Swenberg JA; He C; Zhang Y Science; 2011 Sep; 333(6047):1300-3. PubMed ID: 21778364 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Wu H; Zhang Y Genes Dev; 2011 Dec; 25(23):2436-52. PubMed ID: 22156206 [TBL] [Abstract][Full Text] [Related]
8. Purification of TET Proteins. Huang Z; Yu J; Johnson J; Jin SG; Pfeifer GP Methods Mol Biol; 2021; 2272():225-237. PubMed ID: 34009617 [TBL] [Abstract][Full Text] [Related]
9. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Feng Y; Chen JJ; Xie NB; Ding JH; You XJ; Tao WB; Zhang X; Yi C; Zhou X; Yuan BF; Feng YQ Chem Sci; 2021 Sep; 12(34):11322-11329. PubMed ID: 34567494 [TBL] [Abstract][Full Text] [Related]
10. Development of a rapid mass spectrometric method for the analysis of ten-eleven translocation enzymes. Graves C; Islam K Methods Enzymol; 2024; 703():87-120. PubMed ID: 39261005 [TBL] [Abstract][Full Text] [Related]
11. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Inoue A; Shen L; Dai Q; He C; Zhang Y Cell Res; 2011 Dec; 21(12):1670-6. PubMed ID: 22124233 [TBL] [Abstract][Full Text] [Related]
12. Epigenetic modifications in DNA could mimic oxidative DNA damage: A double-edged sword. Ito S; Kuraoka I DNA Repair (Amst); 2015 Aug; 32():52-57. PubMed ID: 25956859 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic analysis of Tet proteins: key enzymes in the metabolism of DNA methylation. Shen L; Zhang Y Methods Enzymol; 2012; 512():93-105. PubMed ID: 22910204 [TBL] [Abstract][Full Text] [Related]
14. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency. Caldwell BA; Liu MY; Prasasya RD; Wang T; DeNizio JE; Leu NA; Amoh NYA; Krapp C; Lan Y; Shields EJ; Bonasio R; Lengner CJ; Kohli RM; Bartolomei MS Mol Cell; 2021 Feb; 81(4):859-869.e8. PubMed ID: 33352108 [TBL] [Abstract][Full Text] [Related]
15. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793 [TBL] [Abstract][Full Text] [Related]
16. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Hashimoto H; Pais JE; Zhang X; Saleh L; Fu ZQ; Dai N; Corrêa IR; Zheng Y; Cheng X Nature; 2014 Feb; 506(7488):391-5. PubMed ID: 24390346 [TBL] [Abstract][Full Text] [Related]
17. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Mulholland CB; Traube FR; Ugur E; Parsa E; Eckl EM; Schönung M; Modic M; Bartoschek MD; Stolz P; Ryan J; Carell T; Leonhardt H; Bultmann S Sci Rep; 2020 Jul; 10(1):12066. PubMed ID: 32694513 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Song CX; Szulwach KE; Dai Q; Fu Y; Mao SQ; Lin L; Street C; Li Y; Poidevin M; Wu H; Gao J; Liu P; Li L; Xu GL; Jin P; He C Cell; 2013 Apr; 153(3):678-91. PubMed ID: 23602153 [TBL] [Abstract][Full Text] [Related]
19. Distinguishing Active Versus Passive DNA Demethylation Using Illumina MethylationEPIC BeadChip Microarrays. Tiedemann RL; Eden HE; Huang Z; Robertson KD; Rothbart SB Methods Mol Biol; 2021; 2272():97-140. PubMed ID: 34009611 [TBL] [Abstract][Full Text] [Related]
20. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Bian K; Lenz SAP; Tang Q; Chen F; Qi R; Jost M; Drennan CL; Essigmann JM; Wetmore SD; Li D Nucleic Acids Res; 2019 Jun; 47(11):5522-5529. PubMed ID: 31114894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]